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�It is not from the benevolence of the butcher, the brewer, or the baker that we expect our

dinner� Adam Smith.

�Teach self-denial and make its practice pleasure, and you can create for the world a destiny

more sublime that ever issued from the brain of the wildest dreamer.� Sir Walter Scott.

1. Introduction

A variety of experimental and empirical research indicate that prosocial behavior is important

for economic success. There are two sources of prosocial behavior: incentives and preferences.

People may behave prosocially because failure to do so may result in punishment by others (the

whip). But even in the absence of incentives people may behave prosocially out of ethical consid-

erations that determine their preferences (the bible): we refer to this as internalization. There is

evidence for both types of behavior. For example, people make altruistic choices in double-blind

treatments in the laboratory where there is no possibility of punishment or reward. The pages of

history are �lled with tales of great individual sacri�ces for the common good. On the other hand

people are not always guided by societal needs, which is why rewards and punishments exist: we

do have both murderers and prisons. Here we develop a theory of group behavior in which both

sources of prosocial behavior coexist and are endogenously determined. The questions we address

are when we are likely to see incentives rather than internalization, whether they are complements

or substitutes, and what the implications are for economic problems and empirical research.

Unlike existing models in which the prosocial behavior of some people is exogenous, we allow

groups to make costly investments in producing it. We do not think there is any mystery in this.

Prosocial behavior is learned and taught: by our parents, in school, and by our peers. Internalization

in this view is an investment by society in changing preferences. Like social norms themselves we

view this investment as endogenous and functional and ask how a group making collective decisions

optimally invests in internalization. The members who as a result behave prosocially we call

acolytes; the others will be referred to as opportunists.

A key feature of our theory is that internalization is not possible on a case by case basis while

punishment is. That is, either either prosocial behavior is internalized or is not, and being in a

particular environment does not have any impact on this. By contrast, incentives can be adapted

to circumstances: there is no reason that the same incentive system should be used by a business

�rm as by a political party. Consequently the level of internalization is determined by the most

important problems faced by a group. This poses issues for inferring behavior in the large from

behavior in the small. Inside the laboratory, for example, we expect internalization to be exogenous

but punishment endogenous. What does behavior observed in the laboratory then tell us about

behavior outside the laboratory where both internalization and punishment are endogenous?

Our theory combines several standard elements. We follow the ethical voter literature4 and the

4See particularly Feddersen and Sandroni (2006).
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experimental literature on warm-glow giving5 in assuming that each individual has a probability

of being an acolyte, who loses utility for failing to do his/her social duty. Second, we follow a long

empirical literature - in particular Coase and Ostrom (1990) - that argues that groups are good at

providing incentives to their members to achieve group objectives, e�ectively solving mechanism

design problems. The type of incentives we study are punishments as in Ostrom (1990) and Fehr

and Gachter (2000). These might be social punishments such as ostracism, or even monetary

punishments such as �nes. We model monitoring following Levine and Modica (2016): this model

has been used by Levine and Modica (2017) to study lobbying groups and by Levine and Mattozzi

(2020) to study political parties. In this model there is a noisy signal of individual behavior and

the possibility of imposing punishments based on these signals.

In our setting we distinguish between the primary problem faced by a group, a stylized public

good problem where the group determines the fraction of acolytes in society (at a cost), and the

secondary problem, which in our applications is a laboratory experiment. The latter is much less

likely or much less frequent - hence plays little role in determining the investment in acolytes. The

key point is that in the secondary the fraction of acolytes is predetermined.

There are several takeaways from the theory. The �rst is that internalization can have large

e�ects by complementing punishment. This is especially the case when it is di�cult to provide

incentives to monitors: because acolytes are willing to accept small costs to engage in honest mon-

itoring this can be leveraged to provide incentives through punishment. There are also important

di�erences between the primary and the secondary problem. In the secondary problem there can be

�excess� internalization - that is, it may be possible to achieve the �rst best without any monitoring

cost simply by having acolytes engage in production. This cannot happen in the primary problem.

One of the key issues we examine is how changing the primary a�ects the solution of the

secondary. Consider increasing the value of the public good in the primary. This will generally

increase internalization, and this will spill over into the secondary. Hence if we observe societies

with di�erent primaries and compare the same secondary, for example, in a laboratory experiment,

we will observe di�erent outcomes. In particular, the level of punishment in the secondary is not

monotone in the value of the public good in the primary: as the value of the public good in the

primary goes up and so does internalization, in the secondary we will observe little punishment for

low values as there are few acolytes willing to punish; then punishment will go up with value as

more acolytes are available; and for still higher value in the primary, punishment should decrease

in the secondary as the burden of production is born by acolytes. In contrast in the primary

increasing the value of cooperation can never lower the level of punishment - because the fraction

of acolytes in the primary is chosen optimally so there cannot be �too many� of them. Hence in

experiments, since the fraction of acolytes is exogenous, the observed level of punishment need not

be related to norms and incentives to cooperation in the society at large. In other words, we must

be careful in inferring direct conclusions on the strength of norms in society solely based on analysis

5See particularly Andreoni (1990) and Palfrey and Prisbrey (1997).
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of experiments.

As speci�c applications to the secondary problem we engage in a quantitative calibration in

laboratory experiments similar to that in the behavioral economics literature - see in particular

Levine (1986) and Fehr and Schmidt (1999). Our model says that inside the lab there is a number

of acolytes determined by a primary problem solved outside the lab, and that the group attempts

to solve a mechanism design problem inside the lab. We �rst consider the classical public good

experiment with punishment analyzed by Fehr and Gachter (2000), as this is similar to the type

of public goods game in our basic model. In that experiment it is observed that while the average

contribution is very low when there is no punishment, roughly half of the group are willing to bear

the cost of punishment and by doing so induce substantial contributions. We show that this result

is well explained by a simple calibration of our model.

Second, we examine dictator and ultimatum experiments. These are not ideal from our point

of view since it is not entirely clear what the underlying mechanism design problem is, but the

experiments are the only ones where substantial cross-cultural data is available. We observe that

risk aversion will create a mechanism design problem in which there is demand for �fairness� and

that several other considerations point to a social objective function of this type. Using that idea we

obtain results of dictator giving quantitatively consistent with the Fehr and Gachter (2000) public

goods data. We also give a reasonable out-of-sample quantitative explanation of the ultimatum

bargaining data of Du�y and Feltovich (1999). In both Fehr and Gachter (2000) and the ultimatum

data there is evidence both that the participants are trying to solve a mechanism design problem

and that it takes time to do it. Without communication and trying by trial and error to establish

a social norm, we do not �nd this surprising.

Our �nal application is the cross-cultural ultimatum data from Henrich et al (2001). Here we

have substantial cross country variation in the value of the public good in the primary. Our theory

predicts that when this is low we see very bad o�ers and few rejections. In the middle range we

should see good o�ers and substantial rejections and this will be insensitive to variation in the value

of the public good. Finally at the upper end o�ers will be very good and rejections very few again.

This is indeed what we �nd in the data, and indeed we are able to give a reasonable out-of-sample

quantitative explanation of the Henrich et al (2001) ultimatum data.

We emphasize that our goal in this paper is a kind of �proof of concept:� can a simple model of

mechanism design with acolytes capture aggregate behavior6 in some relevant experimental data?

2. Economic Environment

We study an organized group with many members engaging in a representative producer-

recipient-monitor interaction. There are two possible states: the primary state s = 1 which we

6We emphasize that we do not try to explain individual behavior: equilibrium models as a rule do not do a good
job with individual behavior and alternatives such as quantal response models are generally used to analyze the
behavior of individuals. See, for example, Levine and Palfrey (2007).
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interpret as the �normal � state of a�airs and the secondary state s = 2 which is much less likely, for

instance a laboratory experiment. After the state is known the producer chooses an amount xs ≥ 0

to produce at unit marginal cost. Output represents a public good providing a social bene�t to

the recipient of Vsf(xs) where Vs > 0 is a measure of the value of the public good and f is smooth

and strictly di�erentiably increasing and concave7 with Vsf
′(∞) < 1. The �rst best, that is the xs

which maximizes V f(xs)− xs, is then the unique solution of V f ′(xs) = 1, or 0 if V f ′(0) ≤ 1.

The e�ect of any individual member in a large group on average output is negligible, so there is

a severe free-rider problem. We have modeled this by separating the recipient from the producer.

Hence a sel�sh producer would prefer not to produce at all. We are going to assume that peer

pressure can be used to provide producer incentives: production can be monitored and those who

fail to produce can be punished. Speci�cally, in state s the group may establish an output quota

ys and generate a noisy signal zs ∈ {0, 1} about whether the producer respected the quota (that

is produced at least ys), where 0 means �good, respected the quota� and 1 means �bad, failed to

respect the quota.� If the quota is not satis�ed the signal takes on the value 1 with probability

one, and if it is satis�ed it takes on the value 1 with probability πs < 1. This simple stark signal

technology works well in our quantitative analysis and our qualitative analysis is robust to more

general error processes.

Along with the producer and recipient there is an anonymous monitor who, if the signal about

the producer is bad, chooses whether or not to transmit it. If a bad signal is transmitted the

group imposes an endogenous utility penalty Ps ≥ 0 on the producer. This may be in the form of

ostracism or some other social penalty. This punishment is also costly for the monitor, who bears

a proportionate cost of ψsPs where ψs > 0. Notice that since ψs > 0 sel�sh monitors will never

transmit the signal.

As we indicated in the introduction there are two types of group members: acolytes and op-

portunists. Types determine preferences in the sense we will specify shortly. They are private and

drawn independently. The probability 0 ≤ φ ≤ 1 of being an acolyte is endogenous and applies to

both states. It is chosen in the primary state, that is, it is targeted towards the �normal� state of

a�airs.

A social norm in state s consists of an output quota ys, an output target for acolytes Ys ≥ ys,
and a punishment level Ps. The group faces a mechanism design problem. In the primary problem

this consists a choice of φ and a choice of social norm. In the secondary problem φ is imported

from the solution of the primary problem and a social norm is chosen accordingly.

A social norm is only meaningful if group members are willing to adhere to it. In this context

that means that it is incentive compatible for acolytes to produce Ys, for opportunists to produce

ys and for acolytes to transmit a bad signal. Incentive compatibility is de�ned with respect to an

internalization penalty γ > 0: any acolyte who does not follow the social norm su�ers a penalty

of that amount. In other words, an acolyte producer who fails to hit the output target Ys or an

7That is f ′ > 0 and f ′′ < 0.

4



acolyte monitor who fails to transmit a bad signal loses utility γ. This can be interpreted as guilt for

violating the social norm. Opportunists su�er no penalty. When a social norm is followed in state

s each type of producer meets the output quota, therefore expected output is xs = (1−φ)ys +φYs.

The probability of generating a bad signal is therefore πs and the probability that this signal is

transmitted and the producer is punished is equal to the probability that the monitor is an acolyte,

that is φ; the social cost of this punishment is the cost to the producer plus the cost to the monitor

Ps + ψsPs. Therefore the social utility under the incentive compatible norm (ys, Ys, Ps) given φ is

Us = Vsf((1− φ)ys + φYs)− ((1− φ)ys + φYs)− φπs(1 + ψs)Ps

= Vsf(xs)− xs − φπs(1 + ψs)Ps.

The last term is the extra cost generated by the need to solve the free-rider problem. Prior

to the realization of the state the group invests in indoctrination: the greater the investment

in indoctrination the greater the probability φ that a group member will be an acolyte.8 Such

investment is costly: the social cost is Hφ. The choice of φ is made as indicated in the primary

state hence we attribute the investment cost to that state. In particular the objective function in

the primary state is U1−Hφ, and φ, (y1, Y1, P1) is chosen to maximize this. In the secondary state

φ is taken as given and (y2, Y2, P2) is chosen to maximize U2.

2.1. The Incentive Constraints

In the sequel the state will be often clear from context: in these cases we will omit the state

subscript. To more clearly understand the mechanism design problem and the model it is useful

to derive the incentive constraints. In the production problem the probability of being punished

is equal to the probability that the monitor is an acolyte times the probability of a bad signal.

Hence for an opportunist the cost of meeting the target y is y + φπP ; the best alternative is to

produce zero, at cost φP . Therefore the incentive constraint for an opportunist is y + φπP ≤ φP

or y ≤ φ(1− π)P .

Note that whenever it is incentive compatible for an opportunist to produce y it is incentive

compatible for an acolyte to produce up to y+γ. We de�ne ϕ by ϕ = (Y −y)/γ so that Y = y+ϕγ.

Then the above says that a norm (y, Y, P ) is incentive compatible for both types of producers if

and only if y ≤ φ(1 − π)P and 0 ≤ ϕ ≤ 1. Note that a norm (y, Y, P ) can be equivalently

expressed as (y, ϕ, P ); we shall most often use the latter form. Using this notation we can write

x = (1− φ)y + φY = y + φϕγ, and

U = V f(y + φϕγ)− (y + φϕγ)− φπ(1 + ψ)P.

Monitoring as we have indicated can only be carried out by acolytes. For them incentive

8In other words the penalty su�ered by acolytes γ is exogenous but the fraction of acolytes φ is endogenous. This
is discussed below in section 3.6.
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compatibility requires that the private cost of monitoring not exceed the internalization penalty.

This results in the monitoring incentive compatibility constraint ψP ≤ γ.
It will be easily seen that the producers constraint y ≤ φ(1 − π)P binds; thus the monitoring

constraint will be y ≤ φ(1− π)γ/ψ.

Finally, it will be convenient to have a notation for the upper bound on the output the group

can produce. It follows from y ≤ φ(1 − π)γ/ψ that it must be x ≤ φ(1 − π)γ/ψ + φϕγ. Since

ϕ, φ ≤ 1 we get

x ≤ (1− π)γ/ψ + γ ≡ χ.

2.2. Preliminaries

We will repeatedly solve optimization problems equivalent to maxx f(x) − µx subject to x ≤
x ≤ x + X. Since f ′(x) is by assumption strictly decreasing this has a unique solution x∗ given

by the solution to the �rst order condition f ′(x) = µ if this is feasible, and lying on the relevant

boundary if it is not. We can conveniently write the solution as x∗ = g(µ, x,X) where g is [f ′]−1 (µ)

truncated to satisfy the constraints, that is

g(µ, x,X) =


x+X

[f ′]−1 (µ)

x

if [f ′]−1 (µ) > x+X

if x+X ≥ [f ′]−1 (µ) ≥ x

if x > [f ′]−1 (µ).

In our applications we will be solving problems of the form maxθ V f(a + bθ) − cθ subject to

0 ≤ θ ≤ Θ which by a transformation is equivalent to the simpler form above so that the solution

θ∗ can also be expressed in terms of the function g. This expression together with a summary of

the properties of the function g is as follows.

Lemma 1. The function g(µ, x,X) is continuous and increasing9 in x,X. It satis�es x ≤ g(µ, x,X) ≤
x + X and for x < g(µ, x,X) < x + X it is smooth and strictly decreasing in µ. The solution to

maxθ V f(a+bθ)−cθ subject to 0 ≤ θ ≤ Θ is unique and given by θ∗ = (1/b) (g((1/V )(c/b), a, bΘ)− a).

The proof of all results can be found in the Appendix.

3. Optimal Social Norms

We �rst analyze the optimal social norm (y∗, ϕ∗, P ∗) for a given value of φ. This gives the

solution of the secondary problem where φ is in fact �xed, and will enable us to solve the primary

problem for the optimal value of φ. For ease of reading we will continue to omit the state subscript.

A key idea in the choice of an optimal social norm is encapsulated in the marginal cost of

monitoring

M ≡ (1 + ψ)
π

1− π
. (3.1)

9For brevity increasing and decreasing without quali�cation always mean weakly so.
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As we will see this measures the marginal cost of increasing output y by opportunists, arising from

the need to punish them. It consists of two parts: the �rst 1 + ψ is the social cost of punishment,

the second π/(1 − π) measures the di�culty of monitoring. Notice that the numerator π plays a

key role: it measure the amount of punishment that takes place on the equilibrium path - that is

erroneous punishment.

Theorem 1 (Optimum in the secondary). At the optimal solution if φ = 0 then y∗ = 0 and ϕ, P

do not matter. When φ > 0 then ϕ∗ = (1/(φγ))g(1/V, 0, φγ), and

1. If V f ′(φγ) ≤ 1 the optimal solution is �rst best with y∗ = P ∗ = 0.

2. If V f ′(φγ) > 1 the solution is second best with ϕ∗ = 1,

y∗ = g

(
1 +M

V
, γφ,

(1− π)φγ

ψ

)
− γφ,

and

P ∗ =
y∗

φ(1− π)
.

Moreover, the maximized utility is concave and increasing in φ. Finally, y∗ ≤ (1− π)φγ/ψ.

The theorem says that there are three regimes. If V f ′(φγ) ≤ 1 we should use just the acolytes

to provide output; the reason is that there is no monitoring cost associated with their providing

up to φγ of output, and it is enough in the sense that the �rst best of maximizing V f(φϕγ)− φϕγ
is achieved for ϕ∗ < 1. In the second and third regimes V f ′(φγ) > 1 and all acolytes should be

used to produce output, so ϕ∗ = 1. If 1 < V f ′(φγ) ≤ 1 +M it is not worth using opportunists to

produce output. If V f ′(φγ) > 1 +M it is optimal to provide incentives to non-acolytes to produce

too. In other words, punishment serves as a costly backstop technology to making use of acolytes

who have internalized the social norm.

It is worth stressing the fact that the extent of optimal punishment, given the fraction of

acolytes, is proportional to the optimal quota.

3.1. Comparative Statics of The Secondary

Since φ is �xed in the secondary we are now in a position to describe the comparative statics.

We focus on the optimal norm in the case V f ′(φγ) > 1: if V f ′(φγ) ≤ 1 we can attain the �rst best

in the secondary simply by having acolytes produce.

Corollary 1. If V f ′(φγ) > 1 then ϕ∗ = 1 and total output x∗ = y∗ + φγ is increasing in V, φ

and decreasing in π, ψ. De�ne φ̂ by V f ′
(
φ̂χ
)

= 1 + M . For φ < φ̂ the optimal quota y∗ and

punishment P ∗ are increasing in φ and for φ > φ̂ they are decreasing.

Note that the last part asserts the non-monotonicity of punishment in the value of the public

good (on which we will expand in Section 3.5). To see what is going on recall from Theorem 1

that for V f ′(φγ) > 1 the quota y∗ maximizes V f(y + φγ) − (1 + M)y on 0 ≤ y ≤ φ(1 − π)γ/ψ;

so y + φγ ≤ φ(1 − π)γ/ψ + φγ = φχ. For φ < φ̂ it is V f ′ (φχ) > 1 + M , so y∗ is at the upper

7



bound φ (χ− γ), increasing in φ; for φ > φ̂ the optimal y∗ is given by the �rst order condition

V f ′(y∗ + φγ) = 1 +M and so higher φ calls for lower y∗.

3.2. Solution of the Primary Problem

To solve the primary we need to optimally choose φ and a corresponding social norm for the

primary state s = 1. Since by Theorem 1 we already know the optimal choice of social norm for

any state s and any φ, we simply need to �nd the optimal φ for the primary state s = 1. Again,

since we are dealing entirely with one state, we omit state subscripts.

Since P must be chosen optimally from Theorem 1 it must satisfy P = y/(φ(1−π)). Substituting

this into the objective function for the primary we see that the objective may be written as

W ≡ U −Hφ = V f(y + φϕγ)− (y + φϕγ)−My −Hφ.

Moreover, also from Theorem 1 y must be chosen optimally, so according to that theorem must

satisfy the constraint y ≤ (1− π)φγ/ψ and of course ϕ ∈ [0, 1]. Hence we can solve the primary by

maximizing W with respect to φ, y, ϕ subject to these two constraints.

Lemma 2. The optimal primary social mechanism has ϕ∗ = 1.

Theorem 2 (Optimum in the primary). If H < γM then φ∗ = (1/γ)g ((1/V )(1 +H/γ), 0, γ) and

the optimal quota is

y∗ = g

(
1 +M

V
, γ, χ− γ

)
− γ

which is equal to zero if φ∗ < 1.

If H > γM then

φ∗ =
1

χ
g

(
1

V

χ+ (1 + ψ)πγ/ψ +H

χ
, 0, χ

)
and y∗ = (1− π)φ∗γ/ψ.

The theorem has two cases. If H < γM then acolytes are cheap and punishment expensive,

and output is produced solely by acolytes (if there are opportunists, that is φ < 1, they will not

produce). If H > γM then acolytes are expensive and punishment cheap so as much punishment

as is possible should be used to get output from opportunists (y∗ is at its upper bound).

3.3. Comparative Statics of the Primary

Corollary 2. In the primary problem internalization φ∗, the production quota y∗, total output

x∗ = y∗ + φ∗γ and punishment P ∗ are increasing in V . Total output x∗ is increasing in γ and

decreasing in π. If H > γM , punishment P ∗ is constant in V , and for 0 < φ∗ < 1 the optimal

φ∗, y∗, x∗ strictly increase.

We stress the case H > γM because we argue that in applications it is the more relevant one.

In that case the punishment ψP ∗ = γ is at its upper bound hence independent of V .

8



3.4. Lessons Learned

There are several take-aways from this analysis. First, internalization is essential for monitors:

in this model no monitoring can take place without internalization because monitoring is costly and

monitors cannot be monitored.10 It is a ubiquitous problem in mechanism design that getting people

to tell the truth about others is problematic. If monitors have incentive to lie, for example, because

punishment either is costly or bene�cial to them, and they can be identi�ed, then it is possible

to make them indi�erent by punishing them based on their reports. However, this provides weak

incentives for truth-telling and if monitoring itself is costly, there is no incentive to bear that cost.

Even a small incentive to tell an undetectable lie can lead to enormous losses - and a small amount

of internalization by making it strictly optimal for acolytes to tell the truth can have a big impact.11

The second take-away is that in this simple model there is a single variable �internalization� φ

that links problems across states. This has also been called �publicness� and �pro-social.� It plays

a key role in solving the second stage problem as Theorem 1 shows. One particular implication is

that if we can measure φ as we do below using laboratory data then it tells us something about the

solution of the mechanism design problem outside the laboratory.

The role of internalization also di�erentiates societies. That is, societies facing di�erent primary

problems will choose di�erent levels of internalization and this means that they will choose di�erent

solutions to secondary problems: we examine this next.

3.5. Connecting the Primary and the Secondary

Here we take up the issue of how changing the importance of public goods in a society, that

increasing the value V1 in the primary, impacts on economic outcomes in both the primary and the

secondary. The remaining parameters are held �xed, although they need not be equal in the primary

and the secondary. As we believe that it is common to observe less than complete internalization

and some degree of punishment, we focus on the case of costly acolytes: H > γM1. We limit

attention to the case

V1 >
χ1 + (1 + ψ1)π1γ/ψ1 +H

χ1f ′(0)
≡ V 1

since otherwise by Theorem 2 there will be no acolytes and no output in either state. Similarly we

limit attention to

V1 <
χ1 + (1 + ψ1)π1γ/ψ1 +H

χ1f ′(χ1)
≡ V 1

since otherwise the number of acolytes φ∗ = 1 and further increases in V1 will have no impact on

either state.

About the secondary we assume that V2 > (1 +M2) /f
′(0) so that some output is desirable.

We focus as well on secondaries that are not only relatively unlikely, but also, like laboratory

10Or it is prohibitively expensive to do so: see Levine and Modica (2016) for a model where monitors can be
monitored.

11This is not a paper about monitoring technology: in addition to monitoring monitors it may be that there are
several monitors whose reports can be compared. For a deeper analysis of monitoring monitors see Rahman (2012).
We chose this simple technology to make the point that internalization can be essential.
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experiments, with substantially lower stakes than the primary. Other examples might include

politeness in greeting people and throwing trash in bins rather than littering. Speci�cally we

assume that V2 < (1 +M2) /f
′(χ2) which says that it is not worth carrying out punishments to the

extent needed to get the highest feasible level of output.

Theorem 3. If H > γM1 and V 1 < V1 < V 1 then as V1 increases

(i) Acolytes φ∗, output x∗1, and the quota y
∗
1 all strictly increase, and punishment P

∗
1 is constant.

If in addition V2f
′(φ∗γ) > 1 + M2 there are intermediate cuto�s V 1 < V m

1 < VM
1 < V 1 such

that

(ii) for V 1 < V1 < V m
1 output x∗2 and the quota y∗2 strictly increase while punishment P ∗2 is

constant. For V m
1 < V1 < VM

1 output x∗2 is constant and the quota y∗2 and punishment P ∗2 strictly

decrease. For VM
1 < V1 < V 1 output x∗2 strictly increases, the quota y∗2 = 0, and punishment is

constant at zero.

What does this result tell us about internalization? The fraction of acolytes φ∗ is a measure

of internalization, the quota y∗s is the output induced through the use of incentives. Alternatively

incentives are determined by the expected punishment conditional on a bad signal, which is φ∗P ∗s =

y∗s/(1 − πs), proportional to the quota, or by the total social cost of punishment which is (1 +

ψ)πφ∗P ∗s = Msy
∗
s , also proportional to the quota.

We see then that, as V1 increases until V m
1 is reached, internalization and incentives are com-

plements in both problems in the sense that both strictly increase. After V m
1 is reached, in the

secondary only they become substitutes. Increases in V1 above this level continues to raise the

number of acolytes from the primary, but now the marginal value of output in the secondary has

dropped enough that it is optimal to take advantage of the extra production available from the

additional acolytes to reduce the output quota y∗2 rather than further increasing output. By con-

trast in the primary we would never choose the level of internalization this high, so punishment

and internalization always rise. Eventually at VM
1 the quota in the secondary has dropped to zero

so no further cost reductions are possible, and output again increases. This di�erence in solu-

tions between the primary and secondary problem means that we cannot reach simple and direct

conclusions on the primary based on observing the secondary. In particular: if we observe little

punishment in a laboratory experiment this does not imply that there is little punishment in the

society at large.

Example. We now illustrate the theory with a parametric example. We continue to assume

H > γ1M1. We take f(x) = x − (1/(2β))x2 where we assume that β > χs so that the function is

strictly increasing in the feasible region [0, χs]. Let

G(V1) =
β

χ1

[
1− V 1

V1

]
.

The optimal φ∗1 as a function of V1 is equal to G for V 1 ≤ V1 ≤ V 1, while φ
∗
1 = 0 for V1 < V 1 and

φ∗1 = 1 for V1 > V 1. Observing that case V 1/V 1 = 1− χ1/β , the graph of the optimal fraction of
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acolytes is as plotted below.

1

V1

φ∗(V1)

V1 V1

G(V1)

Here y∗1 = [(1− π1)γ/ψ1]φ
∗ and x∗1 = [(1− π1)γ/ψ1 + γ]φ∗ are both proportional to φ∗. More

interesting is the behavior of y∗2, x
∗
2. Assume V2 > 1/ (1− γ/β) so that ϕ∗2 = 1. De�ne

φ =
β

χ2

[
1− 1 +M2

V2

]
, φ =

β

γ

[
1− 1 +M2

V2

]
(recall that higher φ∗1 correspond to higher V1). Then y

∗
2, x
∗
2 as a function of φ∗1 are as plotted

below, illustrating the force of Theorem 3:

χ2φ

φ∗1

x∗2

y∗2

φ φ 1

(χ2 − γ)φ

The graph is drawn for φ < 1. However it may be that φ > 1 is bigger than one (in which

case so is φ) or that it may be that φ < 1 < φ, in which cases the graph must be appropriately

truncated.

3.6. Investment in Acolytes

We assumed that the penalty for acolytes γ is exogenous and that investment in indoctrination

change the fraction of acolytes φ which is endogenous. As a practical matter we think that γ is

heterogeneous in the population and that investment in indoctrination shifts this distribution up.

For simplicity we model this distribution as having just two types. There are two simple models

of how this distribution might shift with investment: that the fraction of acolytes goes up holding

�xed γ at an exogenous level or that the level of acolyte devotion γ goes up with the fraction of

acolytes φ held �xed at an exogenous level. Here we use the former model. In earlier working paper

version of this research Dutta, Levine and Modica (2017) we used the latter model. We switched to

the current model for expositional reasons. The results on the secondary in Theorem 1 are the same

11



since both γ and φ are held �xed there. Not surprisingly analogous with Theorem 2 in primary

if φ is held �xed then as V1 increases then γ∗ increases. This preserves the key result Theorem 3:

that as V1 goes up in the secondary output x∗2 rises while the quota y∗2 �rst rises then falls. This

can easily be seen from 1 where what matters for output and the quota is φγ so increasing γ∗ with

V ∗1 has the same e�ect as increasing φ∗.

4. Laboratory Experiments

According to our theory laboratory experiments are a secondary problem. That is, we can

be reasonably con�dent that internalization is determined without reference to the possibility that

group members may �nd themselves under study by social scientists. This means φ is predetermined

and participants will solve the mechanism design problem posed in the laboratory taking this as

given. We now pose the question: can laboratory data be well explained this way? In other words,

are data consistent with the existence of a fraction of acolytes as our theory predicts?

We should emphasize the following. Our benchmark producer/monitor/recipient model has been

chosen for illustrative purposes. There are many other mechanism design problems that might in

practice constitute either the primary or secondary. For example, production might involve joint

e�ort by several group members, there might be several monitors, output might have both public

and private dimensions, and so forth. They key point is that internalization φ is determined in the

primary and is a parameter in the secondary and that given φ participants solve a mechanism design

problem in the laboratory. There is no need to limit our experimental analysis to the particular

mechanism design problem used to illustrate the basic theory.

4.1. Monitoring

In order to move to applications we need to look more closely at the monitoring technology, in

particular how a wrong signal about a member's behavior may arise in the laboratory. In each case

there is a social norm in the form of an output quota y, and the signal zi on member i's behavior

is about whether or not output xi ≥ y. There are three possible sources of noise: it may be that xi

is imperfectly observed, which we think is the most common interpretation. In the laboratory as a

rule xi is perfectly observed so we reject this source of noise in our applications. We turn next to

two sources of noise that are relevant to the laboratory.

A second source of noise may be that the social norm y is imperfectly observed. Here π corre-

sponds to uncertainty over the social norm. An ultimatum bargaining experiment is, for example,

an unusual event, and two di�erent members of a group may well have di�erent interpretations of

how the social norm applies. In the public goods experiments we study, in three di�erent sessions

average output ranges from 9.8 to 14.3 which indicates to us that there is substantial uncertainty

about what the social norm is. However this interpretation also is problematic in the sense that

over time uncertainty about the social norm should diminish and over a su�ciently long period we

might expect π to converge to zero. We will present evidence showing that this is unlikely to be

the case.

12



The third source of noise can be described as �bad behavior.� In assessing this it is important

to recognize that what π measures is �on-path� punishment, something important in resolving the

mechanism design problem and something we see both in experiments and the broader world at

large. In the model acolytes are homogeneous and so are opportunists: in practice they are not,

nor would anyone who has looked at raw laboratory data imagine that they are. Hence we may

take a Harsanyi like approach Harsanyi (1973) and consider that there is a chance of deviant

preferences. Members may wake up on the wrong side of the bed, they may pursue objectives other

than maximizing income, such as showing up other players, they may be bored, they may have

di�erent risk preferences and some may in fact be risk loving, or they may experiment to check that

they will indeed be punished for violations of the social norm. We can think of this as a probability

of an output deviation around the social norm, and deviations to lower output correspond to

�bad behavior� and lead to �bad signals.� Unlike confusion over social norms, �bad behavior� is a

persistent source of bad signals even when players social norms are well understood and output

perfectly observed. This is going to be our preferred interpretation of π in the experiments.

4.2. Learning

In assessing laboratory data we may start with the following consideration: if in fact acolytes

are successfully solving a public goods problem then realized utility in the laboratory must be

greater than would be obtained in the no-punishment mechanism where acolytes contribute but do

not punish. We refer to this as break-even. This test is relatively easy to implement, and indeed in

the literature on punishment to induce public goods contributions authors have asked exactly this

question: does realized utility including the cost of punishment exceed the utility achieved from

voluntary contribution to the public good without punishment?

We should also emphasize that the laboratory is an especially di�cult environment for solving

mechanism design problems. Agreement over a social norm must be reached without the possibility

of discussion and based on limited observation of the behavior of other participants in a small

number of matches. We do not think that people instantaneously solve mechanism design problems

any more than they instantaneously solve optimization problems. Hence, as is common in the study

of equilibrium, we will wish to focus on later rounds after learning has taken place.12

Our starting point will be the classical experiment on the use of punishments to induce con-

tributions to a public good of Fehr and Gachter (2000). A crucial �nding in that paper is that

break-even is achieved only in the �nal rounds of ten rounds of play. In our study below of ultima-

tum bargaining we �nd that in the standard ten round design there is no evidence that participants

have been successful in solving a mechanism design problem in ten rounds of play, although they

seem to get it right when they play additional rounds. This con�rms our thought that �nding an

optimal mechanism can occur only with substantial learning. Hence we are limited to experimental

12The literature on level-k beliefs, for example Stahl and Wilson (1995), show clearly that equilibrium play is not
a good description of the �rst round in the laboratory, while repeated strangers treatments often lead to equilibrium
even in environments where �nding equilibrium is computationally demanding, see, for example, Levine and Palfrey
(2007).
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studies in which participants engage in the same game over a substantial number of periods so have

ample opportunity to learn. Unfortunately this rules out many experimental studies: for example,

most studies of the trust game involve one or only a few rounds, studies of ultimatum that vary the

parameters faced by the participants repeat each set of parameters only a few times and so forth.

4.3. Overview of �ndings

Before jumping into the details of the experimental analysis here is an overview of our �ndings.

We study three classes of games in which the subjects are Western college students: a public goods

game, the dictator game, and ultimatum bargaining. First, it appears that the probability of being

an acolyte is about 50% and that it takes at least ten rounds of play to �solve� the mechanism

design problem posed in the laboratory. The theory works well quantitatively for both the public

goods problem and for dictator games. For ultimatum bargaining games the results are mixed. If

the only source of the demand for fairness is risk aversion then the theory fairs poorly, but if there

is substantial demand for fairness for other reasons the theory fairs well.

5. Public Goods and Punishment in the Laboratory

The classical experiment on the use of punishments to induce contributions to a public good is

that of Fehr and Gachter (2000). They study a public goods contribution game with four players.

They examine treatments both with and without the possibility of punishment. Participants choose

contribution levels 0 ≤ xi ≤ 20 and receive utility ui = v0− cxi+ v
∑

j 6=i x
j where v0 = 20, v = 0.4,

and c = 0.6.

We analyze their results for the last of ten rounds in the stranger treatment.13 As indicated,

we examine the �nal round to allow participants the chance to �learn their way� to a solution.

Although Fehr and Gachter (2000) also study a partners treatment in which all ten rounds are

played with the same partners, we know from the work of Dal Bo (2005) that we need repeated

treatments of such a repeated game in order to observe equilibrium play. Hence we focus on the

stranger treatment. We use data averaged across all three sessions.

The average contribution in the no-punishment condition is x = 1.9. In the punishment treat-

ment, we will shortly describe, contributions were much higher, at x = 12.3. Can our theory of

internalized norms possibly account for such large contributions when there is punishment? Sur-

prisingly the answer is yes: with the costs and consequences of punishment the acolytes can be

leveraged to greatly enhance contributions.

5.1. The Punishment Game

We must describe how the punishment treatment works. After contributions are observed,

participant i can purchase punishment points pji against j. The cost of these points is equal to

the number of points up to 2 points, then becomes convex.14 As we explain later our theory does

13In the strangers treatment the group composition is randomly changed from period to period.
14The cost of 3 points is 4, for example.

14



not suggest purchases greater than 2.43 so we treat the cost of punishment points as linear. Each

punishment point against a participant reduce their payo� by 10%: speci�cally utility at the end

of the punishment round is vi = (1− (1/10) ·min{10,
∑

j 6=i p
i
j})ui−

∑
j 6=i p

j
i , where the min avoids

pushing payo� below zero.

5.2. The Mechanism Design Problem

As indicated, we interpret noise in the signal zi as due to uncertainty about the social norm,

which is a quota y for contributions. For simplicity we assume �rst that all four participants observe

the same signal zi. We also assume that if there is a bad signal for any match participant all the

acolytes choose a common number of punishment points which we denote by p.

To analyze the induced incentives we must recognize that several participants may have bad

signals and that therefore punishers may have to split their punishments. Conditional on receiving

a bad signal, let Q be the expected number of potential punishers, that is those who would punish

provided they were acolytes. Since each individual has probability φ of being an acolyte, conditional

on a bad signal, the expected punishment is then φQp. In Lemma 3 in the Appendix we show that

Q = 3(1− π) + π2.

For an opportunist then the utility from abiding by the social norm of y with average output

x is (1 − πQpφ/10) (v0 − cy + 3vx) and from contributing zero is (1 − Qpφ/10) (v0 + 3vx), where

notice that the free rider has no punishment cost because she does not punish. Hence the incentive

constraint is (1− πQpφ/10) (v0 − cy + 3vx) ≥ (1−Qpφ/10) (v0 + 3vx).

Next we need to determine how much extra Y − y an acolyte is willing to produce. The fact

that there is an expected cost of punishing in the punishment round limits what acolytes will be

able to contribute in the �rst. Speci�cally, the expected cost of punishing in the punishment round

is (1− (1−π)3)p. Hence the extra cost that can be carried in the �rst period is γ− (1− (1−π)3)p.

This gives Y − y =
(
γ − (1− (1− π)3)p

)
/c.

The mechanism design problem can now be stated: it is to maximize over y, Y, x, p the objective

W = (1− φQpπ/10) (v0 − cx+ 3vx)− (1− (1− π)3)φp

subject to feasibility x = y + φ(Y − y), incentive compatibility for the opportunists

(1− πQpφ/10) (v0 − cy + 3vx) ≥ (1−Qpφ/10) (v0 + 3vx)

and the two incentive compatibility constraints for the acolytes:

p ≤ γ, Y − y =
(
γ − (1− (1− π)3)p

)
/c.

Since the objective is linear and increasing in y and the opportunistic incentive compatibility

constraint is linear, it follows that the opportunists constraint must hold with equality. Solving it
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for x we get

x =
(1− πQpφ/10)cφ(Y − y) + (1− π)(Qpφ/10)v0

(1− πQpφ/10)c− (1− π)(Qpφ/10)3v
.

5.3. Calibration: Acolytes and Opportunists

Our �rst goal is to determine the fraction of acolytes φ and the strength of their commitment

γ. We do this using di�erent data than the data we will analyze: we do this by looking at the Fehr

and Gachter (2000) treatments in which there is no punishment and only voluntary contributions

to the public good occur.

Quoting Fehr and Gachter (2000), the key fact is that �in the no-punishment condition of the

stranger-treatment average contributions converge close to full free-riding over time.� In particular

the average contribution was x = 1.9.15 Moreover �we call those subjects 'free-riders' who chose

...[to contribute 0]... in more than �ve periods of the no-punishment... [They constitute] 53 percent

in the Stranger-treatment.� Adopting this de�nition would yield φ = 0.47.

Knowing that in the stranger treatment x = 1.9 enables us to compute γ.The cost of average

contribution cx = 0.6 × 1.9 = 1.14 is also equal to the average (1 − φ) × 0 + φγ obtained when

acolytes contribute the most they are willing. From this, with φ = 0.47 we get γ = 2.43.

There are issues with this analysis. First, in the no-punishment treatment the number of

people contributing and the level of contributions decline over time. In particular the average over

all ten periods of the contribution is 3.7, considerably higher than in the �nal period, while the

number of non-contributors in the �nal period is about 75%, considerably higher than the Fehr

and Gachter (2000) estimate of 53% opportunists. The �rst issue is whether in fact contributions

were continually declining so that if play continued longer they would continue to decline. Fehr and

Gachter (2000) do not provide round-by-round data about contributions, but this type of decline is

typical for voluntary public goods contributions games, and contributions typically level o� before

ten periods are reached. Below we reproduce data from Dal Bo (2005) on a voluntary public goods

contribution game. As can be seen contributions decline substantially over the ten rounds, but

there is no decline after the seventh round. Hence we will take it that future declines are not a

matter of concern.

15Average contributions for both no-punishment and punishment are taken from their Table 3.
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The second issue is who to identify as opportunists? The data clearly shows that some mem-

bers who are willing to make voluntary contributions in early periods reduce their willingness to

contribute in later periods. One theory of why this might be the case is that of reciprocal altruism:

people are willing to do their share provided others do so, but as they observe others failing to do

their share they stop contributing. While this theory has been widely discussed16 as an explanation

for declining voluntary contributions over time, it is problematic in the current context because it

ought to apply as well to willingness to bear the cost of punishment, and despite the fact there are

free riders failing to bear their share of the punishment cost, we do not observe declining willing-

ness to punish over time. Another theory that might account for both facts is a kind of threshold

altruism: some acolytes are willing to do their share if the social bene�ts are great, but do not

bother if they are small. Hence they are willing to accept free-riding in punishment because the

social bene�ts are great, but not in contributions because the bene�ts are small.

A dynamic theory of two types of acolytes, some of whom are willing to �do their bit� regardless

of circumstances and some of whom are willing �to do their bit� only if they feel circumstances

warrant it is beyond the scope of this paper.

We will start with a strict interpretation in which we use only the �nal period of data from the

no punishment treatments. This means φ = 0.25 with the corresponding γ = 1.14/φ = 4.56 solved

from (1−φ)×0+φγ = 1.14. However, the considerations discussed above leave us somewhat agnostic

about both φ and γ. In particular there may be �circumstantial� acolytes who stop contributing

in the no punishment game but continue to punish in the punishment game. This suggests to us

that the Fehr and Gachter (2000) estimate of φ = 0.47 may be the better one.17 As we show that

this makes no di�erence and as a larger value of φ works better in other settings, we subsequently

accept φ = 0.47. Second, not only may cx = 1.9 be too low due to �circumstantial� acolytes, but

in addition cx is not terribly well estimated.18 In particular the standard error on the estimate of

1.9 is 4.1. As the value cx = 1.9 does not do a terri�c job of explaining the data, we then ask if a

slightly higher value does better and �nd that cx = 2.4, less than a quarter of a standard deviation

greater than the point estimate does do so. These values imply γ = 3.07. Hence our bottom line

from the calibration will be φ = 0.47 and γ = 3.07.

5.4. Calibration

Given φ, γ we can solve the mechanism design problem numerically for each value of π. There

are three targets we will try to match: the �rst two are output x = 12.3, and welfare. Welfare is

reported as 10% higher than the token utility of 21.1 received in the treatment without punishment

(result 8), which is to say 23.3 tokens. The third possible target is the failure rate, denoted by R.

This is de�ned by W = (1−R) (v0 − cx+ 3vx)− 10R, where the factor of 10 is there because each

16See, for example, Fischbacher and Gachter (2010).
17This estimate is broadly consistent with the literature, see Fischbacher and Gachter (2010) or Andreozzi, Faillo

and Saral (2020), for example.
18Note however that cx = 1.9 is large enough that if π were small it would be possible for acolytes to implement

the �rst best y = 20.
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punishment point which costs one token buys only a 10% increase in failure. Using x = 12.3 and

W = 23.3 gives R = 0.11.

As utility measured in tokens is not especially interesting, we normalize utility so that it is zero

when no public good is produced and one at the maximum possible utility of 32 when everyone

donates 20 tokens and there is no punishment. That is, if U is utility in tokens we report welfare

(U − 20)/12. In these units welfare from no punishment of 21.1 tokens becomes 0.10 and from

punishment of 23.3 tokens is 0.28 respectively. In other words, the mechanism observed in the data

is successful in the sense that it yields 0.17 more utility than that without punishment.

Below we report the results of our calibration

Data φ cx π γ p/γ x welfare R

FG: 10 12.3 0.28 0.11

0.25 1.9 0.28 4.56 1.0 12.3 0.39 0.07

0.47 1.9 0.28 2.43 1.0 12.3 0.39 0.07

0.47 2.4 0.38 3.07 1.0 12.2 0.28 0.11

The �rst row is the data. The second row is our baseline of φ = 0.25, cx = 1.9 with π chosen to

match output x. As can be seen this implies a much lower failure rate than is seen in the data and

as a result implies a higher value of welfare. We conclude that this does not look like an optimal

mechanism.

The third row simply veri�es that it makes no di�erence whether φ = 0.25 or φ = 0.47.

Finally, in the fourth we search over values of cx and �nd that with cx = 2.4 we can match all

three values output, welfare, and the failure rate quite well. The corresponding value of π = 0.38.

This indicates a substantial amount of bad behavior, although as we will present evidence that ten

periods is not enough to �nd the optimal mechanism in other experiments, it may be that some of

this is also due to some confusion over the social norm.

6. Fairness and the Equal Split

In this section and the next we examine two games that have been heavily studied in the

experimental laboratory: dictator and ultimatum. In both of these two-player games the �rst mover

receives an endowment X and from it o�ers an amount x to the second mover. In dictator the

decision of the �rst mover is �nal; in ultimatum the second mover has the option to reject the o�er

in which case both get zero. We denote by ci the amount received by each player: c1 = X−x, c2 = x

in dictator or if there is agreement in ultimatum, or zero if the o�er is rejected in ultimatum. For

both games o�ers greater than 0 are common, and a 50− 50 split is often observed.

What mechanism design problem would result in a 50-50 sharing rule in a dictator or ultimatum

game? The answer is that there are several, and indeed we know from the work of Townsend (1994)

and Prescott and Townsend (1984) that mechanism design with ex ante uncertainty about types

creates a strong tendency towards equal division. Here we highlight three forces working towards

equal sharing.
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Risk and Insurance. Laboratory participants are known to be risk averse over laboratory stakes. If

they are ex ante identical then it is socially optimal to share unanticipated gains. In particular, in

a dictator game if both participants have an identical risk averse utility function u(ci) then welfare

is u(X − x) + u(x) which is maximized when x = X/2.

Incentives and Commitment. We know that giving is sensitive to e�ort (Kahneman, Knetsch and

Thaler (1986)). Indeed, even in dictator e�ort is involved for both parties: the e�ort in showing

up to the laboratory and remaining even when it is discovered that the participant has been

assigned to the role of recipient. When there is joint production and e�ort is complementary, if

all the output accrues to one partner there is a commitment problem: ex ante there should be

commitment to sharing to provide the partner with incentives to provide e�ort, but ex post the

partner who receives the output would prefer to keep it. Social mechanisms can provide the missing

commitment. As a simple illustration, suppose there is a joint production function in which output

is y = V (x1x2)α with α < 1/2. If hi is the output share of individual i then individual expected

utility is hiy−xi. Fixing the output shares the optimal individual output is shown in the appendix

to be xi = (αV )1/(1−2α) (1− hi)α/(1−2α)h(1−α)/(1−2α)i . The social objective function is then

V (x1x2)α − x1 − x2 = ((1− h1)h1)α/(1−2α) (αV )2α/(1−2α) V (1− α).

This has a maximum at h1 = 1/2: that is the optimal incentives are provided by an equal sharing

rule.

Prevent Con�ict From Competitiveness. One of our �rst experiences with the social norm of sharing

is as children when we are asked to share toys rather than compete and �ght over them. Competi-

tiveness from a utilitarian point of view is a utility function (in the extreme case) of ci − c−i: that
is an individual is competitive if they care about how much better they do than others. Outside

the laboratory this may be for a variety of reasons - for example an individual may bene�t by

weakening an opponent as well as strengthening themselves, and reputation may be enhanced by

outperforming others. Competition leading to lower prices, lower costs and innovation has social

value. Competition leading to transfer payments does not. There is evidence of competitiveness

in the laboratory: for example in Palfrey and Prisbrey (1997) about 15% of participants fail to

contribute to a public good when it costs them nothing to do so. Note that this is ine�cient from

a social point of view, although it is strictly desirable for a competitive individual. It makes sense

as well that participants might well �compare notes� after the experiment to see who did the best.

To see how competitiveness matters in ultimatum, observe that a competitive individual will

reject all o�ers less than 50% and accept all o�ers greater than 50%. As when there are multiple

equilibria our assumption is that the best one is chosen, we assume that all o�ers of exactly 50%

are accepted as well. If there are no competitive individuals in the population all o�er nothing and

get it - there is no ine�cient rejection of o�ers. If there are only competitive individuals in the

population all o�er 50% and get it (again we assume that the e�cient action is taken in the face

of indi�erence) - and again there is no ine�cient rejection of o�ers.
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When there is a mixed population, some competitive and some not, there is a problem. In

this case all competitive individuals will o�er nothing because that o�er will be accepted by the

non-competitive individuals (competitive recipients would only accept o�ers exceeding 50% but if

you are competitive those splits give you zero utility at best). If less than 50% of the population is

competitive then non-competitive individuals will also o�er nothing since a better than even chance

of X is better than a certain chance of X/2. Regardless: some o�ers will be rejected by competitive

individuals and this is ine�cient from a social point of view. These rejections can be viewed as a

kind of ine�cient con�ict.

There are two sources of the social problem created by competitiveness. There are the on-path

rejections of o�ers by competitive individuals and there are the o�ers of less than 50% by both types

of individuals. The mechanism designer can do nothing about the �rst problem directly - there is no

way to impose additional punishment on individuals who reject o�ers. But the mechanism designer

can do something about the second problem. If non-competitive individuals can be convinced to

enforce the social norm of an even split by having second movers reject worse o�ers then demands

will be reduced and o�ers not rejected, restoring e�ciency. This has the interesting feature that the

solution to ine�cient (on-path) rejections is to increase the (o�-path) rejections. We should note

that it was established in Levine (1986) that second movers rejection rates exceed that consistent

with the amount of competitiveness in the �rst round - a small bit of evidence that participants

are �getting it right� in the laboratory.

6.1. Demand for Fairness

The simplest and cleanest model is that of risk. To do a quantitative analysis we need a utility

function. Here we take the calibration from Fudenberg and Levine (2011): if c denotes laboratory

earnings they suggest that a utility function of the form 1−(1+c/C)1−ρ with C = $40 �ts the data

reasonably well. There is considerable heterogeneity in risk aversion (which we will ignore) and

they �nd that the median coe�cient of relative risk aversion ρ is about 1.43. This can be thought of

as a measure of the demand for fairness: the greater is ρ the greater the social gain from equalizing

income. In dictator, as we shall see, the value of ρmatters little as long as it is positive. By contrast,

in ultimatum ρ plays a key role - and ρ = 1.43 is not nearly large enough to explain observed

behavior through the social mechanism theory outlined above: it predicts considerably more sel�sh

behavior than we observe. Since, as we have indicated, there are additional forces creating demand

for fairness - incentives and con�ict prevention - we do not view this as an important shortcoming.

To account for these additional forces we propose to keep the simple clean risk aversion model but

for social utility use the CES utility function with ρ = ρr+ρf where ρr = 1.43 and ρf is a calibrated

additional demand for fairness.

6.2. Dictator

Dictator games are relatively easy. There is no possibility of punishment: with the standard

X = $10 the theory says that the acolytes should contribute the minimum of $5 and γ. In

Engel (2011)'s meta-study of dictator games �dictators on average give 28.35% of the pie� but for
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students (the subject population for the public goods and ultimatum experiments we discuss) the

meta-regression at the beginning of section 4.6 gives a value of 24.7%. This is remarkably close to

47% of acolytes each giving 50%, which is to say that if γ ≥ $5.00 the theory predicts what we see

in dictator games.

It is worth pointing out that the theory contends equally well with experiments in which there is

an additional option to �take� $5.00 from the second mover. In this case the free riders should indeed

take, while the acolytes o�ers would be −5.00 + γ or $5.00 if the latter is smaller. Indeed, we can

use the results of �take� experiments to get an estimate of γ. In List (2007) adding the �take� option

resulted in a drop from giving away $2.48 to taking of $1.33 that is a drop of $2.48 + $1.33 = $3.81.

If we let λ represent the drop in acolytes o�ers we have 3.81 = φλ+ (1− φ)5 so that λ = ($3.81−
$2.65)/.47 = $2.47 which says that acolytes donations drop from $5 to $(5 − 2.47) = $2.53; since

the donation is 2.53 = min{γ − 5, 5} this in turn implies a value of γ = $5.00 + $2.53 = $7.53.

6.3. Ultimatum

We review the mechanism design problem, assuming that the endowment X is 10. Individual

utility is given by u(c) = 1− (1 + c/C)1−ρr and social utility by w(c) = 1− (1 + c/C)1−ρr−ρfwhere

C = 40 and ρr = 1.43. In our reporting we will continue normalize social utility to be measured as

a fraction of the maximum, that is, we will multiply by 1/w(5) (5 being the equal split of X = 10).

We denote by q the probability an acolyte rejects an o�er on a bad signal, and continue to denote

by π the error rate in the signal process. As in our dictator data we discovered γ considerably

above $5 we assume that acolytes are willing to reject any o�er on bad signal (so q can be as high

as 1) and are willing to o�er $5 (which is Y in this case) which for e�ciency reasons they should

do. Hence the objective function is

(1− qφπ) [φw(5) + (1− φ)(1/2)(w(y) + w(10− y))]

and should be maximized with respect to q, y subject to the constraints that q ≤ 1 and that for

opportunists the utility of conforming to the social norm and o�ering y is better than deviating

and o�ering zero: (1 − qφπ)u(10 − y) ≥ (1 − qφ)u(10). Since this must hold with equality at the

optimum we can compute

q =
u(10)− u(10− y)

φu(10)− φπu(10− y)
.

6.4. Calibration

We will now engage in a calibration exercise based on two sources of data. We use data from

Roth et al (1991) used in an earlier behavioral calibration exercise by Levine (1986). We use

pooled tenth round data. This data has the advantage that it is described in some detail and has

been extensively analyzed in the literature. It also has the property that it does not resemble an

optimal mechanism. Is this a failure of the theory or did the participants simply not have adequate

time to learn how to implement an optimal mechanism? To assess this we shall use a much longer

data series of 40 periods from Du�y and Feltovich (1999).
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In the public goods game we had φ = 0.47. In Roth et al (1991) there is a large jump in

the number of o�ers from $4.25 to $4.00 and the fraction of o�ers $4.25 or less is 48%. This is

consistent with the idea that generally acolytes make o�ers close to $5.00, so we shall continue to

take φ = .47.

Our next step is to calibrate ρf . We do so by assuming that in Roth et al (1991) break-even

is achieved near the end of ten rounds as it is in Fehr and Gachter (2000). The smallest value of

ρf for which break-even is achieved in the tenth round is ρf = 8.27, considerably larger than the

coe�cient of relative risk aversion. For our basic calibration we will take a slightly higher value

ρf = 8.57 (which results in ρr + ρf = 10).

As we did in the public goods experiment we can now compute the optimal mechanism as a

function of π. As before we target output x, welfare, and a measure of the failure rate R = qφ

which it the probability of rejection conditional on a bad signal.19 Below are the results of our

calibration

Data/Case ρf π q x welfare R

RET: 10 4.07 0.83 0.34

8.57 0.21 0.72 4.07 0.91 0.34

DF out of sample 8.57 0.38 0.47 3.25 0.85 0.22

DF: 11-40 3.63 0.88 0.16

The �rst row is the data from Roth et al (1991). The third line is our baseline calibration.

Here we choose π from the public good experiment above, π = 0.38. As can be seen this does not

work: output is lower than in the data and the rejection rate much lower. Somewhat surprisingly

this results in only a modest increase in welfare. In the second row we choose π so that output is

matched. Here the rejection rate is matched but welfare is much too high.

Our conclusion is that the Roth et al (1991) does not look like an optimal mechanism. Is this

because the theory is wrong, or because ten periods is not long enough to �nd the mechanism?20

To answer this we took data from Du�y and Feltovich (1999) for periods 11 through 40. This

is reported in the �nal row of the table.21 A crucial fact is that output fell and the failure rate

19The conditional rejection rate in the data is taken to be the rejection rate for �clearly bad signals.� We de�ne
this as an o�er of $3.25 or less. This was based on inspection of the rejection rates in the Roth et al (1991) data:
there is a clear break at $3.25. If we take the cuto� at $3.00 then R = 0.24 which while it �ts the theory better is
implausible in light of the higher rejection rate when the cuto� is $3.25.

20Note that Roth et al (1991) indicate that their examination of the data leads them to believe that convergence
has not yet taken place.

21Du�y and Feltovich (1999) do not provide the frequency of o�ers so we cannot directly compute welfare as we do
for Roth et al (1991). Instead we approximate it using the assumption that φ o�ers of $5.00 are made and accepted
(all such o�ers were), and that the remaining o�ers are identical and calibrated to match the mean o�er x = 3.63 and
that these identical o�ers are rejected at the conditional rejection rate R = 0.16. The same procedure applied to the
RET10 data with mean o�er x = 4.07 and R = 0.34 yields a welfare value of 0.81 quite close to the value computed
from the detailed data of 0.83.
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dropped by a large amount after the tenth period. With respect to Du�y and Feltovich (1999) we

have a pure out of sample forecast. The parameter φ = 0.47 is from both the Fehr and Gachter

(2000) and Roth et al (1991), ρr = 1.43 is from Fudenberg and Levine (2011), ρf = 8.57 is from

Roth et al (1991) and π = 0.38 is from Fehr and Gachter (2000). These parameters do a credible

job of explaining the Du�y and Feltovich (1999) data although output in the data is somewhat

larger than the theory predicts and the failure rate somewhat higher. To give a sense of the failure

rate, we reproduce below the acceptance rates for $3 o�ers ($7 demands) as reported in Du�y and

Feltovich (1999) together with the red line which is the implied rate from R = 0.22 which is to say

0.78 for acceptance.

As in the Roth et al (1991) data the acceptance rate for the �rst ten periods is much lower than

required by the theory, but beginning in the 11th period it jumps up substantially to roughly the

level required by the theory.

Finally, we ask what happens if we do not constrain π to be the same as in the public good

experiment. The fourth �recalibrated� row of the table chooses π to closely match output in the

Du�y and Feltovich (1999) data. This results in a value of π = 0.30, lower than we found in the

public goods data and roughly the same failure rate. An important observation is this: in Du�y

and Feltovich (1999) very little changes in the �nal thirty rounds. If π represents uncertainty about

the social norm we would expect this uncertainty to resolve over thirty periods of play and we see

no such thing. Hence again we interpret π as due to bad behavior. This is less clear cut in the

public good experiments where play ended in ten rounds, so it is plausible that π might be smaller

here than in the public goods case.

6.5. Demand for Fairness Revisited

We calibrated the demand for fairness ρf so that the break-even was achieved in the Roth et

al (1991). Even with that assumption we do not �nd evidence that participants are succeeding in

solving a mechanism design problem. By contrast with the longer data series in Du�y and Feltovich

(1999) we �nd evidence that after the tenth period they are. This suggests that there might be little

reason to calibrate the demand for fairness to the Roth et al (1991) data. We explored a couple of

alternatives for ρf , and as we report here the results do not change substantially. The table below

considers alternative values of ρf , targeting the Du�y and Feltovich (1999) data reproduced in the

�nal row.
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Data/Case ρf π x welfare R

match 11.57 0.42 3.20 0.83 0.22

11.57 0.38 3.38 0.85 0.25

DF out of sample 8.57 0.38 3.25 0.85 0.22

5.57 0.38 2.91 0.86 0.14

match 5.57 0.31 3.33 0.88 0.22

DF: 11-40 3.63 0.8822 0.16

To isolate the e�ect of ρf , in the second, third and fourth rows we hold �xed π. The third row

with ρf = 8.57 is reproduced from table above for ease of comparison. As can be seen raising ρf

raises both output and the rejection rate, while lowering it lowers both. There is little e�ect on

welfare. If we adjust π to match the rejection rate for the out of sample calibration we see that the

higher value of ρf does slightly worse on output and welfare and the lower value slightly better,

but the e�ect is modest. Over all it appears that the calibration is relatively robust to substantial

changes in ρf . Note, however,that even in the Du�y and Feltovich (1999) data risk aversion alone

is not enough to explain the data in the strong sense that the break-even point is 3.37, still positive.

7. Connecting the Primary and the Secondary: Cross Cultural Ultimatum

A key implication of our theory is Theorem 3 relating the solution of the primary to the

secondary. To assess this using laboratory data we need to compare the same experiment across

di�erent societies that have di�erent primaries and hence di�erent levels of internalization φ∗. This

is delicate because we do not have much information about the primaries: the mechanism design

problems may be di�erent, the importance of public goods V1 may be di�erent, and the monitoring

technologies may be di�erent. While there have been many cross-cultural studies there is often

little variation in the outcomes and it is hard to assess how the primaries di�er. To give a sense

of the di�culties, consider the Roth et al (1991) study from which we analyzed the US data. This

study was also conducted in three other societies: Israel, Japan, and Yugoslavia. Despite the fact

in some cases the subject populations were college students and in other cases soldiers, and despite

the fact that there is variation in output and rejection rates, Fudenberg and Levine (1997) show

that from the perspective of participant losses there is not much di�erence in the outcomes. On

top of this we have very little idea how to compare the primaries for these four countries.

As an alternative, we looked at data from the broadest cross-cultural study we know of, namely

the the famous study of Henrich et al (2001) of �fteen small and very di�erent societies. These

are primitive societies and the authors assess an ethnographic variable indicating the gains to

cooperation in each society. This is very close to V1 and because there is so much variation in this

variable, we may hope it swamps other relevant di�erences such as monitoring technology. It is also

the case that one of the games they studied was the ultimatum bargaining game, and indeed this

was the only game that was used at all sites. Using these data we test the main prediction of the
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model concerning the extent of punishment in the secondary: namely that it should �rst increase

then decrease as the value of the public good goes up in the primary.

7.1. Theory of First Period Play

Unfortunately in the Henrich et al (2001) study the participants did not play ten times, let

alone thirty times - they played only once. We already know that without substantial experience

participants struggle to implement an optimal mechanism. We argue, however, that acolytes are

striving to achieve an optimal mechanism even in a single period of play. As we saw before the

optimal rejection rate is much lower than is observed in the data: the calibrated conditional rejection

rate is 0.22 while the �rst period conditional rejection rate from Du�y and Feltovich (1999)23 is

0.46. In early periods acolytes over punish. This makes sense: understanding the necessity of

punishment to control the opportunists, to be �safe,� acolytes punish su�ciently hard that they

know they can get the opportunists under control. This is costly - which is why it is not an optimal

mechanism - but given more periods of experience they learn to reduce the punishment: this is

what the data shows in both the public goods game and in ultimatum bargaining. This suggests

that even in the �rst period the e�ect of φ should be felt.

We propose a simple model of �rst-period play. Suppose that q∗2 is optimal with respect to

the long-run error rate π2 = 0.38. We hypothesize that the observed q̃2 is proportional to the

optimum, that is, q̃2 = θq∗2. That is, acolytes over punish relative to the optimal mechanism, but

their over-punishment re�ects the extent to which punishment is desirable in the sense it is part of

the optimal mechanism.

Below we give data and theory for our basic calibrated parameters with φ = 0.47. The �rst row

is �rst period data from Du�y and Feltovich (1999) and the second is the optimal mechanism. We

will explain the �nal column and two rows shortly.

Data/Case q2 x2 R Ru

DF/RET: 1 4.10 0.46 0.26

DF out of sample 0.47 3.25 0.22 0.08

θ = 2.09 0.98 0.46 0.17

θ = 2.09, π̃2 0.98 3.91 0.46 0.26

We continue with ρf = 8.57 and π2 = 0.38. From R = q̃2φ, R = 0.46 and φ = 0.47 we get

q̃2 = 0.98, that is the over-punishment factor is θ ≡ q̃2/q∗2 = 2.09. The penultimate row of the table

shows that this then matches the conditional rejection rate in the data.

When φ is small the conditional rejection rate R = q̃2φ cannot easily be observed for low values

of φ since there are very few acolytes, hence very few observations on how frequently the reject.

Hence in our cross-disciplinary work we will focus on the unconditional rejection rate Ru = q̃2π2φ

which is directly observed. This is reported both for the data and theory in the �nal table column

23First period �gures for Du�y and Feltovich (1999) are xtrapolated from the averages in the �rst �ve and second
�ve rounds.

25



above.24 As can be seen the unconditional rejection rate in the data is much higher than for the

θ adjusted theory. This leads to our second adjustment. We assume that due to confusion over

the social norm the actual error rate π̃2 is larger than the long-term error rate π2 = 0.38. As the

ratio of the unconditional rejection rate in the data 0.26 to that in the theory 0.17 is λ = 1.53, we

should take π̃2 = λπ2 = 0.58.

Finally, we turn to the behavior of the opportunists as re�ected by the incentive compatible

quota y2. It does not make sense to assume that this is chosen with respect to some long term goal

of the acolytes, so we assume that it is chosen optimally with respect to the parameters that exist

in the �rst period, that isq̃2, π̃2. This is computed by inverting the incentive constraint

q̃2 =
u(10)− u(10− y2)

φu(10)− φπ̃2u(10− y2)
.

The �nal row of the table above carries out the calculation, where it can be seen that output

x̃2 = 3.91 is similar to the value 4.10 observed in the data.

7.2. Out of Sample Analysis of Cross-Cultural Ultimatum

With this theory of �rst period play we now report how output x̃2 and the unconditional

rejection rate Ru = q̃2π2φ vary with internalization φ. For ease of reading the unconditional

rejection rate Ru is reported in percent. This is plotted side by side with the data from Henrich et

al (2001)25 (using the same vertical scale) which we discuss subsequently.

The features of the graph are qualitatively like those of Theorem 3. The unconditional rejection

rate is not monotone: it initially increases then declines as with many acolytes there is little reason

to pay the cost of punishing the few opportunists. Second, output initially rises quite rapidly. Unlike

the optimal mechanism for which it �attens out, the over-punishment mechanism has output decline

24The data is taken from round one of Roth et al (1991) as it is not available in Du�y and Feltovich (1999).
If we apply the same approximation procedure used to assess welfare in Du�y and Feltovich (1999) to assess the
unconditional rejection rate we get Ru = 0.24, quite close to what is observed in the Roth et al (1991) �rst period
data.

25We omit data from one group, the Lamalera because deception was used. The data is taken from Henrich et al
(2004) as it is more conveniently presented there.
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slightly after the initial rise, then rise again. As can be seen, this is driven by the cost of punishment:

after the unconditional rejection rate peaks and starts declining output does not rise much, rather

the increased internalization is used to reduce punishment costs. Once this is exhausted because

punishment is no longer used (recall that y∗2 = 0 for high φ∗ from Theorem 3), output begins to

rise more rapidly.

How does the data in Henrich et al (2005) compare? The horizontal axis in the �gure �payo�s to

cooperation� is a categorical variable taking on the values C ∈ {1, 2, ..., 6}. This is an ethnographic

variable based on the extent to which each society is judged to bene�t from cooperation - or to

say the same thing - the importance of public goods in each society. It is conceptually the same

as the primary value V1. The vertical axis is as in the theory, which we have put side-by-side for

comparison. As indicated we are making the heroic assumption that the only di�erence between

these di�erent societies is in fact the primary value of V1. This determines internalization φ as an

increasing function from Theorem 2. Hence the horizontal axis may also be taken to measure φ.

There is some anecdotal evidence to support this: according to Henrich et al (2005) in Ache, the

group with the highest value of V1, �Successful hunters often leave their prey outside the camp to

be discovered by others, carefully avoiding any hint of boastfulness.� This sounds like a high value

of φ. Note, however, that the relationship between the horizontal axes for the data and theory is

monotone, but there is no reason that it should be linear: we reason to think that V1 is linear in

the ethnographic variable, and the relationship between V1 and φ is not linear.

As can be seen output is qualitatively similar in both �gures, initially rising, then declining

slightly then rising again. The rejection rate is an inverted U in both cases. Although broadly

speaking the �gures are quantitatively similar, there are three quantitative anomalies.

The most serious anomaly is that on the left output is much higher than predicted by the

theory for the given rejection rate. Speci�cally, in the data, the �rst two data points have an

average rejection rate of 3.7% and output of 3.50. According to the theory when the rejection rate

on the left is 3.7% output should be 0.64, much less than 3.50. We discuss this in the next section.

There are also two anomalies which we view as less serious. On the right in the data output begins

to rise before the rejection rate reaches zero although according to the theory this should happen

only when the rejection rate drops to zero. Finally, the peak of the theoretical rejection rate is

somewhat lower than the peak in the data.

7.3. In Sample Analysis of Cross Country Ultimatum

The quantitative out of sample analysis fails badly for the two low V1societies C ∈ {1, 2}. Our
observation that it is hard to reconcile small rejection rates with relatively high output is not new

and has been discussed, for example, in Henrich et al (2004). One explanation that is discussed is

that of risk aversion. One of the anomalous groups were the Orma, studied by Ensminger (2004).

Interviews with informants were revealing: �people were obsessed with the possibility that their

o�er might be refused, in spite of the fact that they thought (correctly) that it was unlikely that

people would refuse even a small o�er.� In particular fairness does not seem to be the key issue.
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Could it be that risk aversion may be considerably higher in these small societies than the

ρr = 1.43 we used based on studies with college students? This would lead to higher output than

predicted by the theory. One problem is that in one of the anomalous societies, the Mapuche,

there is independent evidence of risk aversion from Henrich and McElreath (2002). They �nd that

individuals are primarily risk loving rather than risk averse. However, the Mapuche have a higher

rejection rate than others with C = 2 and so for them the anomaly is smaller. Without more

detailed data it is hard to say more.

Instead we turn to the model. Recall our assumption that π̃2 has two components, a long run

component π2 = 0.38 due to �bad behavior� and a �confusion factor� λ = 1.53. We held these �xed

and independent of the society. Does this make sense?

First, we might consider �bad behavior� among young, rich and bored western college students

playing for relatively low stakes versus older, poorer participants some of whom traveled a consid-

erable distance to participate and who played for relatively high stakes. We would surely expect

more �bad behavior� in the former. This suggests that in the cross-cultural experiments π2 might

be considerably lower than for the western data we calibrated to.

Second, does it make sense that the confusion over the social norm as measured by λ is a

constant? Suppose output is x2. Participants probably have a rough idea what this number is and

that the social norm y2 lies to the left. But for larger x2 there is greater scope for confusion: if

x2 = 4.75 then there are a broad range of y′2s lying to the left, while if x2 = 2.5 there are considerably

fewer possible social norms. This suggests that we might have λ(x2) which is increasing in x2.

To examine the potential impact of these two factors we chose π2 = .15 (to match output for

C = 2) and assumed that for x2 < 4 we have no confusion, π̃2 = π2 while for x2 > 4 the noise π̃2

remains as it is in our original calibration.26 The comparison of output between the theory and the

data is reported below.

Here φ is estimated by matching the unconditional rejection rate in the data to that in the

theory. The blue line is output in the data, the red line in the out of sample theory and the yellow

line in the modi�ed theory as just described. The labels on the horizontal axis correspond to the

26Speci�cally we take λ = 3.88. This is the factor needed to reconcile π2 which the observed unconditional rejection
rates in the western data. Alternatively this can be thought of as calibrating λ to the unconditional rejection rate
for the intermediate society C = 4 which is similar to that in the western data.
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out of sample theory and the modi�ed theory respectively. Hence, for example, for C = 2 the

unconditional rejection rate in the data is Ru = 4.7%. In the out of sample theory this rejection

rate to the left of the peak occurs when φ = 0.08, and for the in sample theory when φ = 0.33.

The height of the blue curve is the mean output for C = 2 in the data x2 = 3.73, the height of the

red curve is the output computed from the out of sample theory for φ = 0.08, that is x2 = 0.75,

which as we know is far too low, and the height of the yellow curve is computed from the in sample

theory for φ = 0.33 which gives x2 = 3.82 and closely matches the data because we calibrated π2

so this would be the case.

Quantitatively the modi�ed theory does much better than the out of sample theory, although

output initially rises too fast then remains too high. For the two low V1 societies the modi�ed theory

does much better than the out of sample theory, which is not surprising since it was designed for

this purpose. For the four high V1 societies the modi�ed theory does clearly worse for C = 4

although neither theory really captures the dip in the data, it does slightly worse for C = 3 and

considerably better for C = 3 . Hence we take both theories as reasonable for C ∈ {3, 4, 5, 6} while
the modi�ed theory does a good job for C ∈ {1, 2} as well.

Our interpretation of the data seen through lens of social mechanisms with internalization

is rather di�erent than that taken by Henrich et al (2005). Their view is that greater objective

incentive for cooperation outside the laboratory leads to greater fairness inside the laboratory. This

does not predict the lack of monotonicity of o�ers and punishment that our theory predicts and

that we observe in the data. While 14 observations of widely di�ering societies and a handful of

ultimatum games played in each society under di�cult conditions cannot be persuasive, the theory

of social mechanisms provides a much more detailed, accurate, and sharper account of what to look

for in the data. An interesting case is that of the Ache. This society has the highest V1, the highest

x2 and the unconditional rejection rate is at the minimum Ru = 0. It is also described as a highly

homicidal society in which in-group homicide is a common cause of death. Our interpretation is

that this corresponds to a high cost of punishment in the primary. This is exactly as our theory

indicates: while punishment in the secondary eventually declines with V1 punishment in the primary

strictly increases.

8. Conclusion

We conclude by indicating how the ideas in this paper �t into the broader literature of experi-

mental and behavioral economics. Writers such as Bowles et al (2003) and Roemer (2015) point to

evolutionary reasons why punishment might be �hard-wired.� Experimentalists such as Fehr and

Gachter (2000) similarly argue that intrinsic preferences for reciprocal altruism �do unto others as

they have done unto you� are observed in the laboratory. We do not doubt that small children

do not need to be taught to punish the theft of a toy. Never-the-less social norms must - and do

- specify punishment levels scaled to the nature of the o�ense, the bene�t of deviating, and the

chances of getting caught. Hence our approach of treating the choice of punishment as the solution

to a mechanism design problem. In particular in our setting acolytes carry out punishments because

29



they are useful in solving the social problem of public goods provision, not because of an intrinsic

desire for revenge.

We examine a particularly simple stark theory of internalization based on warm glow giving and

study the trade-o� between the use of incentives and internalization. We show that the idea that

in the laboratory participants solve mechanism design problems subject to uncertainty but making

good use of internalization is consistent with what we see. In particular we �nd that internalization

is important in alleviating the need to provide incentives to monitors and that data from laboratory

experiments is broadly consistent with a fraction of the population internalizing the social norm.

Moreover, we �nd evidence for the prediction that the extent of punishment is not monotone in the

�value of cooperation� in the society at large.

30



References

Abreu, D. and Rubinstein, A. (1988), �The structure of Nash equilibrium in repeated games with
�nite automata,� Econometrica 1259-1281.

Akerlof, George A., and Rachel E. Kranton (2000) "Economics and identity," The Quarterly Journal
of Economics 115(3): 715-753.

Andreozzi, L., M. Faillo and A. S. Saral (2020): "On Altruism, Reciprocal and not. A Dictator
Game Experiment," mimeo Trento.

Andreoni, J. (1990): �Impure altruism and donations to public goods: A theory of warm-glow
giving,� Economic Journal 100: 464-477.

Belloc, M., F. Drago and R. Galbiati (2016): �Earthquakes, religion, and transition to self-
government in Italian cities,� The Quarterly Journal of Economics 131: 1875-1926.

Bénabou, Roland, and Jean Tirole (2006): "Incentives and prosocial behavior," The American

Economic Review 96(5): 1652-1678.
J.P. Bénassy (1998): "Conformism and multiple sycophantic equilibria", in P. Howitt and A. Lei-
jonhufvud (eds), Money, Markets and Method, Edward Elgar.

Bigoni, M., S. Bortolotti, M. Casari., D. Gambetta and F. Pancotto (2016): �Amoral familism,
social capital, or trust? The behavioural foundations of the Italian North�South divide,� The

Economic Journal 126:1318-1341.
Bisin, A., and Verdier, T. (2001):�The economics of cultural transmission and the dynamics of
preferences,� Journal of Economic theory 97(2): 298-319.

Bisin, A., and Verdier, T. (2005): �Cultural transmission,� The New Palgrave Dictionary of Eco-
nomics.

Block, J. I., and Levine, D. K. (2016): Codes of conduct, private information and repeated games,�
International journal of game theory, 45: 971-984.

Boldrin, M., Christiano, L. J., and Fisher, J. D. (2001): �Habit persistence, asset returns, and the
business cycle,� American Economic Review : 149-166.

Bowles, S., and Gintis, H. (1976): Schooling in capitalist America (Vol. 57). New York: Basic
Books.

Gintis, H., Bowles, S., Boyd, R. and Fehr, E. (2003): �Explaining altruistic behavior in humans,�
Evolution and Human Behavior, 24: 153-172.

Cason, T. N., Sheremeta, R. M. and Zhang, J. (2012): �Communication and e�ciency in competitive
coordination games,� Games and Economic Behavior 76: 26-43.

Coase, R. H. (1960): �The Problem of Social Cost,� Journal of Law and Economics 3: 1-44.
Campbell, J. Y. and Cochrane, J. H. (1999): �By force of habit: A consumption-based explanation
of aggregate stock market behavior,� Journal of political Economy, 107: 205-251.

Constantinides, G. M. (1990): �Habit formation: A resolution of the equity premium puzzle,�
Journal of political Economy, 98: 519-543.

Du�y, J. and Feltovich, N. (1999): �Does observation of others a�ect learning in strategic environ-
ments? An experimental study,� International Journal of Game Theory 28: 131-152.

Cremer, J. and McLean, R. P. (1988): �Full extraction of the surplus in Bayesian and dominant
strategy auctions.� Econometrica 56: 1247-1257.

Bó, P. Dal (2005): �Cooperation under the shadow of the future: experimental evidence from
in�nitely repeated games,� American Economic Review 95: 1591-1604.

Dutta, Rohan (2012): �Bargaining with Revoking Costs,� Games and Economic Behavior, 74:
144-153.

Dutta, Rohan, David K. Levine and Salvatore Modica (2018): �Damned if You Do and Damned if

31



You Don't: Two Masters,� mimeo EUI.E., and S. Gächter (2000): �Fairness and retaliation: The
economics of reciprocity,� Journal of Economic Perspectives 14: 159-181.

Dutta, R., D. K. Levine and S. Modica (2017): �Peer Monitoring, Ostracism and the Internalization
of Social Norms,� EUI.

Ensminger, J. (2004): �Market integration and fairness: evidence from ultimatum, dictator, and
public goods experiments in East Africa,� Foundations of human sociality: economic experiments

and ethnographic evidence from �fteen small-scale societies, 356-381.
Engel, C. (2011): �Dictator games: A meta study,� Experimental Economics 14: 583-610.
Feddersen, T., A. Sandroni (2006): �A Theory of Participation in Elections,� American Economic

Review 96: 1271�1282.
Fehr, E. and S. Gächter (2000): �Cooperation and Punishment in Public Goods Experiments,�
American Economic Review 90: 980-994.

Fehr, Ernst and Klaus M. Schmidt (1999): �A Theory of Fairness, Competition and Cooperation�,
Quarterly Journal of Economics 114: 817-868.

Fischbacher, U. and S. Gachter (2010): �Social preferences, beliefs, and the dynamics of free riding
in public goods experiments,� American Economic Review 100: 541-56.

Fudenberg, D. and D. K. Levine (1997): �Measuring Players' Losses in Experimental Games,�
Quarterly Journal of Economics 112: 507-536.

Fudenberg, D. and D. K. Levine (2011): �Risk, Delay, and Convex Self-Control Costs,� AEJ Micro

3: 34�68.
Fudenberg, Drew, David Levine and Eric Maskin (1994): �The Folk Theorem with Imperfect Public
Information,� Econometrica 62(5): 997-1039.

Fudenberg, D., D. K. Levine and W. Pesendorfer (1998): �When are Non-Anonymous Players
Negligible," Journal of Economic Theory 79: 46-71.

Gale, D and Sabourian, H. (2005): �Complexity and competition,� Econometrica, 73: 739-769.
Harsanyi, J.C. (1973): Games with randomly disturbed payo�s: A new rationale for mixed-strategy
equilibrium points, International Journal of Game Theory 2: 1-23.

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., and McElreath, R. (2001): �In
search of homo economicus: behavioral experiments in 15 small-scale societies,� The American

Economic Review 91(2): 73-78.
Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., and McElreath, R. (2004):
�Overview and Synthesis,� Foundations of human sociality: Economic experiments and ethno-

graphic evidence from �fteen small-scale societies, ed. Henrich, J. P., Boyd, R., Bowles, S., Fehr,
E., Camerer, C., and Gintis, H., Oxford University Press on Demand.

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., and McElreath, R. (2005):
�'Economic man' in cross-cultural perspective: Behavioral experiments in 15 small-scale soci-
eties," Behavioral and Brain Sciences 28: 795-815.

Henrich, J. and R. McElreath (2002): �Are peasants risk-averse decision makers?� Current Anthro-

pology 43: 172-181.
Jackson, M. O. (2010): Social and Economic Networks, Princeton university press.
Kahneman, D., J. Knetsch, and R. Thaler (1986): �Fairness as a Constraint on Pro�t-Seeking:
Entitlements in the Market,� American Economic Review 76: 728-741.

Kandori, M. (1992): �Social norms and community enforcement,� The Review of Economic Studies

59(1): 63-80.
Levine, D. K. (1986): �Modeling altruism and spitefulness in experiments,� Review of Economic

Dynamics 1: 593-622.
Levine, David K. (2012): Is behavioral economics doomed?: The ordinary versus the extraordinary

Open Book Publishers.

32



Levine, D. K. and A. Mattozzi (2020): "Voter Turnout with Peer Punishment," forthcoming,
American Economic Review.

Levine, David and Salvatore Modica (2016): �Peer Discipline and Incentives within Groups�, Jour-
nal of Economic Behavior and Organization 123: 19-30

Levine, David and Salvatore Modica (2017): �Size, Fungibility, and the Strength of Lobbying
Organizations�, European Journal of Political Economy 49: 71-83

Levine, D. K., and T. R. Palfrey (2007): �The paradox of voter participation? A laboratory study,�
American Political Science Review 101: 143-158.

List, J. A. (2007): �On the interpretation of giving in dictator games,� Journal of Political Economy
115: 482-493.

Meyer, Christian Johannes and Tripodi, Egon, Sorting into Incentives for Prosocial Behavior (Oc-
tober 24, 2017). Available at SSRN: https://ssrn.com/abstract=3058195

Muthoo, Abhinay (1996): �A Bargaining Model Based on the Commitment Tactic,� Journal of

Economic Theory 69: 134-152.
Olson Jr., Mancur (1965): The Logic of collective action: public goods and the theory of groups,
Harvard Economic Studies.

Ostrom, Elinor (1990): Governing the commons: The evolution of institutions for collective action,
Cambridge university press.

Palfrey, T. R. and Prisbrey, J. E. (1997): �Anomalous behavior in public goods experiments: How
much and why?� American Economic Review, 829-846.

Ponemon, L. A. (1993): �Can Ethics Be Taught in Accounting?� Journal of Accounting Education

11: 185-209.
Prescott, E. C. and Townsend, R. M. (1984): �Pareto optima and competitive equilibria with
adverse selection and moral hazard,� Econometrica, 21-45.

Rahman, David (2012): �But Who Will Monitor the Monitor?�, American Economic Review 102(6):
2767-2797.

Rand, D. G., Greene, J. D., and Nowak, M. A. (2012): �Spontaneous giving and calculated greed,�
Nature, 489: 427-430.

Robson, A. J. (1990): �E�ciency in evolutionary games: Darwin, Nash and the secret handshake.,�
Journal of theoretical Biology, 144: 379-396.

Roemer, John (2015): �Kantian optimization: An approach to cooperative behavior,� Journal of
Public Economics 127(C): 45-57.

Rogers, V. and A. Smith, A. (2008): �An Examination of Accounting Majors' Ethical Decisions
Before and After an Ethics Course Requirement,� Journal of College Teaching and Learning, 5:
49-54.

Roth, A. E., Prasnikar, V., Okuno-Fujiwara, M. and Zamir, S. (1991): �Bargaining and market
behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: An experimental study,� American
Economic Review: 1068-1095.

Schelling, Thomas C. (1956): �An Essay on Bargaining,� The American Economic Review 46(3):
281-306.

Skarbek, D. (2014): �The social order of the underworld: How prison gangs govern the American
penal system,� Oxford University Press.

Stahl, D. O., and P. W. Wilson (1995): �On players´ models of other players: Theory and experi-
mental evidence,� Games and Economic Behavior 10: 218-254.

Tirole, J. (2009): �Cognition and incomplete contracts.� American Economic Review 99(1): 265-94.
Tisserand, J. C., Cochard, F., and Le Gallo, J. (2015): �Altruistic or Stategic Considerations:
A Meta-Analysis on the Ultimatum and Dictator Games,� Besançon: CRESE, Université de
Franche-Comté.

33



Tangney, J. P., J. Stuewig and D.J. Mashek (2007): �Moral emotions and moral behavior,� Annual
Review of Psychology 58: 345-372.

Tangney, J. P. and R. L. Dearing, R. L. (2003): Shame and Guilt. Guilford Press.
Townsend, R. M. (1994): �Risk and insurance in village India,� Econometrica, 539-591.
Turner, J. H. and J.E. Stets (2005): The Sociology of Emotions, Cambridge University Press.

Appendix

In this Appendix the numbering is that of the text.

Lemma 1. The solution to maxθ V f(a + bθ) − cθ subject to 0 ≤ θ ≤ Θ is unique and given by

θ∗ = (1/b) (g((1/V )(c/b), a, bΘ)− a). The function g(µ, x,X) is continuous and increasing27 in

x,X. It satis�es x ≤ g(µ, x,X) ≤ x+X and for x < g(µ, x,X) < x+X it is smooth and strictly

decreasing in µ.

Proof. Taking x = a+bθ the objective function is V f(x)−c(x−a)/b while the constraint is a ≤ x ≤
a + bΘ. If we linearly transform the objective function dividing by V and subtracting (1/V )ca/b

we get the equivalent objective function f(x) − (1/V )(c/b)x. Hence x∗ = g((1/V )(c/b)), a, bΘ).

Substituting into θ∗ = (x∗ − a)/b give the desired result.

The properties of g follow directly from the properties of f and the de�nition of g.

Theorem 1. At the optimal solution if φ = 0 then y∗ = 0 and ϕ,P do not matter. When φ > 0

then ϕ∗ = (1/(φγ))g(1/V, 0, φγ) and

1. If V f ′(φγ) ≤ 1 the optimal solution is �rst best with y∗ = 0, P ∗ = 0.

2. If V f ′(φγ) > 1 the solution is second best with ϕ∗ = 1,

y∗ = g

(
1 +M

V
, γφ,

(1− π)φγ

ψ

)
− γφ,

and

P ∗ =
y∗

φ(1− π)
.

Moreover, the maximized utility is concave and increasing in φ. Finally, y∗ ≤ (1− π)φγ/ψ.

Proof. Consider �rst the production problem. Observe that the probability of being punished is

equal to the probability that the monitor is an acolyte times the probability of a bad signal. Hence

for an opportunist the cost of meeting target y is y+ φπP , while the best alternative of producing

zero costs φP , resulting in the incentive constraint y + φπP ≤ φP or y ≤ φ(1− π)P . As indicated

above whenever it is incentive compatible for an opportunist to produce y it is incentive compatible

for an acolyte to produce up to y+γ, that is up to ϕ = 1. Therefore, a norm (ϕ, y, P ) with 0 ≤ ϕ ≤ 1

is incentive compatible for both types of producers if and only if y ≤ φ(1− π)P .

27For brevity increasing and decreasing without quali�cation always mean weakly so.
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If φ = 0 the only feasible y = 0 and U = 0 for any P,ϕ, as in the statement. Now assume φ > 0.

Since P should be minimized we get P = y/ [φ(1− π)]. Incentive compatibility for monitoring

requires ψP ≤ γ, which inserting the value of P from above reads

y ≤ (1− π)φγ/ψ. (8.1)

This is the �nal result indicated above.

Now the monitoring cost of output y + φϕγ is (1 + ψ)φπP = My, so the objective function is

U = V f(y + φϕγ)− (y + φϕγ)−My. (8.2)

This has to be maximized with respect to y, ϕ subject to the constraints y ≤ (1 − π)φγ/ψ and

0 ≤ ϕ ≤ 1.

Since the objective function is concave and the constraint set convex, we see immediately that

the maximized objective is concave in φ. It is increasing in φ: because utility depends only on

x = y+φϕγ and y and the feasibility restrictions x ≤ y+φγ and y ≤ (1−π)φγ/ψ are both relaxed

as φ is increased.

From the objective function we see that ϕ is a dominant technology over y: that is, increasing

output by increasing y has an associated monitoring cost of (1 + ψ)πy/(1− π) and ϕ does not. In

particular if at the optimum ϕ < 1 then y = 0 otherwise output y + φϕγ could be held �xed and

utility increased by lowering y and increasing ϕ. Next we show that ϕ < 1 when V f ′(φγ) ≤ 1. This

occurs because there is also a resource cost of producing output when the designer faces the �rst

best problem of maximizing V f(x)− x. If V f ′(φγ) ≤ 1 the solution to this problem is feasible and

obtained by taking y∗ = 0 and from Lemma 1 with a = 0, b = φγ, c = φγ choosing ϕ∗ as stated in

the proposition.

The solution ϕ∗ = (1/(φγ))g(1/V, 0, φγ) has the property that ϕ∗ = 1 for V f ′(φγ) ≥ 1. When

that is the case it may be optimal to choose y∗ > 0: we should �x ϕ∗ = 1 and maximize U in 8.2

with respect to y under the constraint y ≤ (1 − π)φγ/ψ. Applying Lemma 1 - with a = φγ, b =

1, c = [1 +M)]- the given solution results. From the de�nition of g if y∗ > 0 this solution satis�es

V f ′(y∗ + φγ)− 1−M ≥ 0

so V f ′(y∗ + φϕγ)− 1 > 0 implying ϕ∗ = (φγ)−1 (g(1/V, y, φγ)− y∗) = 1 = (φγ)−1g(1/V, 0, φγ), as

it should.

Corollary 1. If V f ′(φγ) > 1 then ϕ∗ = 1 and total output x∗ = y∗ + φγ is increasing in V, φ

and decreasing in π, ψ. De�ne φ̂ by V f ′
(
χφ̂
)

= 1 + M . For φ < φ̂ the optimal quota y∗ and

punishment P ∗ are increasing in φ and for φ > φ̂ they are decreasing.
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Proof. From Theorem 1 we know that if V f ′(φγ) > 1 then the solution has ϕ∗ = 1 and

y∗ = g

(
1

V

(
1 + (1 + ψ)

π

1− π

)
, γφ,

(1− π)φγ

ψ

)
− γφ, P ∗ =

y∗

φ(1− π)

so since total output is y∗+ φγ the �rst part follows from Lemma 1 and Theorem 1. From the two

cited results it also follows that y∗ is decreasing in φ in the interior (when φ is large) but increasing

at the upper bound (when φ is small). The condition given in the result is the transition between

the interior and upper bound.

The �nal part follows from the fact that from Theorem 1 P ∗ is increasing in y∗.

Lemma 2. The optimal primary social mechanism has ϕ∗ = 1.

Proof. Suppose ϕ∗ < 1. From Theorem 1 #2 the solution must be �rst best with y∗, P ∗ = 0 and

output x∗ = φ∗ϕ∗γ. If φ∗ > 0 we may increase ϕ and decrease φ keeping y∗, P ∗, x∗ all �xed. Since

φ has marginal cost H and ϕ has none this strictly increases the objective function. On the other

hand if φ∗ = 0 then ϕ does not matter, so we may as well take it equal to 1.

Theorem 2. If H < γM then φ∗ = (1/γ)g ((1/V )(1 +H/γ), 0, γ) and the optimal quota is

y∗ = g

(
1 +M

V
, γ, χ− γ

)
− γ

which is equal to zero if φ∗ < 1.

If H > γM then

φ∗ =
1

χ
g

(
1

V

χ+ (1 + ψ)πγ/ψ +H

χ
, 0, χ

)
and y∗ = (1− π)φ∗γ/ψ.

Proof. The partial derivatives of the objective function are

∂W1/∂y = V f ′(y + φγ)− 1− (1 + ψ)
π

1− π

∂W/∂φ = γ
(
V f ′(y + φγ)− 1

)
−H = γ

(
∂W/∂y + (1 + ψ)

π

1− π

)
−H.

If follows directly that if H < γ(1 +ψ)π/(1−π) = γM then ∂W/∂φ ≤ 0 implies ∂W/∂y < 0 hence

at the optimum, if φ < 1 so that ∂W/∂φ ≤ 0, we have ∂W/∂y < 0 so y∗ = 0. When y∗ = 0 Lemma

1 gives the expression for φ∗ in the statement. If φ = 1 (with ϕ∗ = 1 as well by Lemma 2) we can

write the objective function as W = V f(y+γ)−y−γ−y(1+ψ)π/(1−π)−H. Applying Lemma 1

gives the expression for y∗. Since H < γ(1 +ψ)π/(1− π) = γM if φ < 1 then this expression gives

y∗ = 0 so is valid in both cases. On the other hand φ∗ = 1 i� γV f ′(y+φ∗γ) ≥ γ+H in which case

γV f ′(φ∗γ) ≥ γ +H so (1/γ)g ((γ +H)/(V γ), 0, γ) = 1 = (1/γ) [g ((γ +H)/(V γ), y, γ)− y∗].
It similarly follows that if H > γ(1 + ψ)π/(1− π) = γM then the constraint y ≤ (1− π)φγ/ψ

binds. Indeed in this case if ∂W/∂y ≤ 0 then ∂W/∂φ < 0, so either ∂W/∂φ < 0 so φ∗ = 0 or
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∂W/∂y > 0 hence the constraint again binds. This gives the objective function

W = V f((1− π)φγ/ψ + φγ)− ((1− π)φγ/ψ + φγ)− (1 + ψ)πφγ/ψ −Hφ

which making use of χ = (1− π)γ/ψ + γ is as given above, so the �nal result follows as well from

Lemma 1.

Corollary 2. In the primary problem internalization φ∗, the production quota y∗, total output

x∗ = y∗ + φ∗γ and punishment P ∗ are increasing in V . Total output x∗ is increasing in γ and

decreasing in π. If H > γM , punishment P ∗ is constant in V , and for 0 < φ∗ < 1 the optimal

φ∗, y∗, x∗ strictly increase.

Proof. Internalization and the production quota follow directly from Theorem 2, with total output

the immediate consequence.

Punishment is given by P ∗ = y∗/ [φ∗(1− π)] from Theorem 1. By Theorem 2 if H < γM then

either y∗ = 0 so P ∗ = 0 or φ∗ = 1 in which case y∗ is increasing in V so P ∗ is as well. If H > γM

then the constraint binds so y∗ = (1− π)φ∗γ/ψ = φ∗(χ− γ) so P ∗ = γ/ψ is independent of V .

To prove the assertion on total output x∗ observe from Theorem 2 if H < γM then total output

is

x∗ = g

(
1

V
(γ +H)/γ, 0, γ

)
+ g

(
1

V
(1 + (1 + ψ)π/(1− π)) , γ, χ− γ

)
− γ

and if H > γM then total output is

x∗ = g

(
1

V

χ+ (1 + ψ)πγ/ψ +H

χ
, 0, χ

)
.

In both cases the assertion follows from the properties of g in Lemma 1.

Theorem 3. If H > γ1M1 and V 1 < V1 < V 1 then as V1 increases

(i) Acolytes φ∗, output x∗1, and the quota y
∗
1 all strictly increase, and punishment P

∗
1 is constant.

If in addition V2f
′(φ∗γ) > 1 + M2 there are intermediate cuto�s V 1 < V m

1 < VM
1 < V 1 such

that

(ii) for V 1 < V1 < V m
1 output x∗2 and the quota y∗2 strictly increase while punishment P ∗2 is

constant. For V m
1 < V1 < VM

1 output x∗2 is constant and the quota y∗2 and punishment P ∗2 strictly

decrease. For VM
1 < V1 < V 1 output x∗2 strictly increases, the quota y∗2 = 0, and punishment is

constant at zero.

Proof. Part (i) is simply a restatement of the relevant portion of Corollary 2.

We know from the primary that as V1 goes from V 1 to V 1 internalization φ∗ strictly increases

from 0 to 1. From Theorem 1 we know that the solution of the secondary is given by

y∗2 = g

(
1

V2
(1 +M2) , γ2φ

∗, (χ2 − γ2)φ∗
)
− γ2φ∗.
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Recall that V2f
′
(
χ2φ̂2

)
= 1 +M2 and de�ne V2f

′
(
γ2φ̃2

)
= 1 +M2. Note that by our assumptions

0 < φ̂2 < φ̃2 < 1. Hence y∗2 takes on one of three values, with corresponding total output from

x∗2 = y∗2 + φ∗γ2 and punishment from P ∗2 = (1/(1− π2))(y∗2/φ∗).
For small φ∗ < φ̂2 (small V1) it is

y∗2 = (χ2 − γ2)φ∗, x∗2 = χ2φ
∗, P ∗2 = (1/(1− π2))(χ2 − γ2)

for intermediate φ̂2 < φ∗ < φ̃2 (intermediate V1) it is

y∗2 = [f ′]−1
(

1

V2
(1 +M2)

)
− γ2φ∗, x∗2 = [f ′]−1

(
1

V2
(1 +M2)

)
P ∗2 = (1/(1− π2))

[
(1/φ∗)[f ′]−1

(
1

V2
(1 +M2)

)
− γ2

]
while for large φ∗ > φ̃2 (large V1) it is

y∗2 = 0, x∗2 = γ2φ
∗, P ∗2 = 0.

This gives the desired results.

Lemma 3. The expected number of potential punishers conditional on a bad signal is Q = 3(1 −
π) + π2.

Proof. The second row of the table below lists for a particular participant i who has a bad signal

the probability that one of the other three has a bad signal.

others with bad signals 0 1 2 3

probability (1− π)3 3(1− π)2π 3(1− π)π2 π3

number punishing 3 2 4/3 1

The �nal row of the table indicates how many opponents are potentially willing punish i. If

i has the only bad signal all three opponents will potentially punish her (total 3). If there is one

other bad signal then the two without bad signal each give half a punishment to the two with bad

signals, and the one with a bad signal gives a full punishment to i (she does not punish herself),

so total in this case is 1/2 + 1/2 + 1. If there are two other bad signals then the one without a

bad signal gives 1/3rd punishment and the two with bad signal each give half a punishment to the

other two with bad signals, with total 1/3 + 2 · 1/2 = 4/3. Finally, if there are three other bad

signals then each gives 1/3rd punishment. To compute the expected number of potential punishers,

observe that if the numbers in the �nal row were 3, 2, 1, 0 the expectation would be 3(1−π). Hence

the actual expectation is Q = 3(1− π) + (1/3)3(1− π)π2 + π3 = 3(1− π) + π2.
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