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We show that subgame-perfect equilibria of infinite-horizon games arise as limits,
as the horizon grows long and epsilon small, of subgame-perfect epsilon-equilibria
of games which are truncated after a finite horizon. A number of applications show
that this result provides a useful technique for analyzing the existence and
uniqueness of infinite-horizon equilibria. We extend our result to the sequential
equilibrium concept. Journal of Economic Literature Classification Numbers: 022,
026, 611.

1. INTRODUCTION

The concept of sequential rationality has been useful in understanding a
wide range of economic problems. The idea is that the agents will not be
misled by opponents’ threats, but will instead compute their opponents’
future actions from their knowledge of the structure of the game. This
rationality requirement was first formalized by Selten |12] as subgame-
perfect equilibrium.! With a finite horizon, such equilibria are ordinarily

* It is our pleasure to thank Robert Anderson, Timothy Kehoe, Eric Maskin, Andrew
McLennan, Ariel Rubinstein and Jean Tirole for helptul conversations. Joe Farrell, Franklin
M. Fisher, David Kreps and the referees provided useful comments on an earlier draft.

* For conciseness some propositions are without proof. The missing proofs are in |2|.

' Selten | 13] introduced the more restrictive notion of “trembling-hand™ perfection. Kreps-
Wilson’s [4] “sequential equilibrium” is a mathematically more convenient version of the
trembling hand, since the sequential and trembling-hand equilibria coincide for generic
payoffs. While we title our paper “Subgame-Perfect Equilibria...,” due to the information
structures we consider all of the equilibria we discuss will be sequential (in particular not just
those of Section 6).
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computed by backwards induction; with an infinite horizon determining the
perfect equilibria is more difficult. However, specification of a fixed horizon
is often artificial, and frequently an infinite-horizon game better captures the
economics of a situation. This paper describes a method for characterizing
equilibria of infinite-horizon games.

We do not consider the most general extensive-form games. Our
formulation does allow simultaneous moves, and, in Section 6, uncertainty
and mixed strategies. We allow current options to be limited by the history
of play. We also allow relatively general forms of intertemporal preference,
requiring neither stationarity nor additive separability. One restriction we do
impose is that agents should be impatient—they should not be too concerned
about events in the far distant future. While our model is somewhat
restrictive, it covers many games considered in the economics literature.

The technique we propose is to study £7-equilibria in the game truncated
after T periods of play. Here we follow Radner [8] in defining an &-
equilibrium as a strategy selection in which each player, taking opponents’
strategies as given, is within ¢ of the largest possible payoff. Our main result
says that as T— oo and eT - 0 the set of ¢"-equilibria in the truncated games
converges to the set of equilibria in the infinite-horizon game. Because
players are not too concerned about the distant future, equilibria for a long
finite horizon will “almost” be equilibria in the infinite horizon, and
conversely. Characterization of infinite-horizon equilibria as limit points is
then made possible by finding a suitable topology on the space of strategies.

In Section 2 we introduce a model which allows simulatenous moves, but
not uncertainty or mixed strategies. Section 3 contains a technical analysis of
continuity and the limiting behavior of equilibria. Section 4 considers games
with finitely many actions in each period. We show that with perfect infor-
mation perfect equilibria exist. In Section 5 we discuss the uniqueness of
equilibrium. In the finite action case we give an easily verifiable necessary
and sufficient condition for the uniqueness of pure strategy equilibrium.
Using a similar technique we study a special case of Rubinstein’s |10]
bargaining game, giving a more informative proof of uniqueness than in the
original. In Section 6 we extend our results to allow for mixed strategies and
unobservable moves by nature. We characterize infinite-horizon sequential
equilibria as limit points and show that they exist. Section 7 reviews our
findings.

2. GAMES, SUBGAMES, AND EQUILIBRIA

This section defines games in extensive and normal form when there is no
uncertainty. We do not consider the most general definition of a game in
extensive form. Nevertheless, many economically important games are in the
class we study.
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For our purposes a game (in extensive form) has an infinite number of
periods t = 1, 2,.... Each period all N players simultaneously choose actions
from feasible sets of actions, which we take to be subsets of R*. When they
choose an action in period f they know the entire history of the game until
and including time 1 — 1.2 It is possible that the set of feasible actions is
constrained by the history of play.

The period-t outcome of the game lies in R™*. The way in which the
period-t outcome is made up of individual actions is discussed below. The
outcome of the game is a sequence of period-1 outcomes x = (x;, X,,..) € B =
X,_,RMN. The outcome space of the game is X < B: it is a list of all possible
outcomes of the game. Note that not every sequence of period 1 outcomes is
in X; i.e., X is not necessarily a product space. An example helps illustrate
this.

ExAMPLE 2.1 (MCLENNAN’S TERMINATION GaMe'). There are two
players, one and two. Play alternates with player one moving first. On his
move a player may either continue or terminate the game. If a player
terminates the game in period ¢ he receives a present value of f'a and his
opponent f'h, where a and b are scalars and O <pB <1 is the common
discount factor. If play never terminates both players receive zero.

Let “0” denote the option of “doing nothing” and *1” be the option of
terminating the game. Here N =2 and M = |: the outcome of the game is a
pair (»,,y,), where y,, ¥, € {0, I} < R. A player must choose 0 if it isn’t his
move, or if the game has already terminated. Thus the outcome space X is
the set of sequences of the form ((0, 0),, (0,0),.... (1.0),. (0,0),, ,...). where
¢ is odd, ((0,0),, (0,0),,... (0, 1),, (0,0),, ,...), where 1 is even, or (0. 0),.
(0,0),,...).

It is generally useful and entails no loss of generality to designate the
outcome 0 € RMM the “null” outcome “nothing happens.” We require that
the null outcome always be feasible. This means that if x is feasible then the
vector x(t), truncated after ¢ by requiring that the null outcome occur in
periods ¢ + 1, t + 2,..., is also feasible:

VX € X Vix(t)= (x,s X300 %, 0,0, ) EX. (2.1)

2 Thus while we do not restrict attention to games of perfect information. the information
structure is “almost™ perfect in that at the end of each period there is no uncertainty. in
Section 6 we extend our results to games in which Nature may make moves that are not
completely observable; we will, however, continue to assume that the past actions of the
players are common knowledge. For more general definitions of extensive-form games see
Luce—Raiffa |6} or Kreps—Wilson |4].

3 We are grateful to Andrew McLennan for providing this example, which helped clarity
our thinking in the early states of our investigation.
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Let X(x,s) be the space of all possible outcomes in period s consistent
with the history x,, x,,..., X, ., with the convention that X(0, 1) is the set of
possible first-period outcomes. By assumption (2.1) we may consider this to
be the space of vectors y such that (x,, x;,.... x,_,, »,0,0,..) € X since if
2= (X Xy 120 Zg 10 Zgy10e) € X then 2(8) = (X, X,_ (s 3, 0, 0.) € X
as well.

Furthermore, although past outcomes may restrict current choices we
require that a sequence feasible at each point in time is actually feasible:

If Yix(()€EX then x€EX. (2.2)

(See footnote 4 below.)

If X is to be the action space of a game then the choices available to
player i in period 7 given a prior history x, denoted X'(x, 1), must not depend
on what other players do in period ¢. Thus, in addition to (2.1), we must also
require that the space of all feasible outcomes X(x, ?) is the cartesian product
of the individual action spaces

VXE XVIX(x, 1) = XY, Xi(x, ). (2.3)

Thus in Example 2.1 the set of possible outcomes at time 2 if the game has
not yet been terminated, X(0, 2) = {(0, 0), (0, 1)}, is the cartesian product of
X'(0,2)= {0} and X*(0,2) = {0, 1}.

DEerFmNITION 2.1, A game in extensive form is a pair (X, V), where X c B
satisfies (2.1), (2.2), (2.3) and V= (V')}., is an N-tuple of valuation
functions V' : X —» R assigning a value to each history of the game.

In Example 2.1 where z' =((1,0),, (0, 0),,...) and z* = ((0,0),, (0, 1),,
(0,0),....), ¥(0)=(0,0), ¥(z') = (Ba, Bb), and V(z*)= (B°b, f’a).

ExampLE 2.2 (REPEATED GAMES). Each agent i has a fixed set of
actions 0 € A < RM, a utility function U’ : 4 —» R, where 4 = XV 4’ and a
discount factor §;. Then in our framework the repeated game has the action
space X = X2 4 so that history places no constraints on behavior. The
valuation functions are Vi(x) = Y'®  BiU'(x,).

Further examples are given in subsequent sections.

Associated with each game in extensive form is a collection of truncated
games in normal form. The normal form of the game truncated at time 7 by
assigning the null outcome to all following periods is specified by giving its
strategy space S(T). Let us formally describe this space. At time s player i,
knowing the history x,, x,,..., X,_,, must choose a feasible action in X(x, s)
to undertake in period s. (Note that for now we do not allow mixed
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strategies.) Let gi(x) denote this choice. Thus for s =1, gi € X'(0, 1), while
for s > 1, g! is a mapping

g :X(s—1)>R™  with gi(x)€ X(x,s)

where X(¢) denotes all possible histories to time t, i.e., all vectors (x,.
X0 %, 0,0,...) EX. A complete set of contingent choices of this type is
called a strategy and is simply a sequence (g!,gi.., g',0,0,..), where
g, € X(0,1) and for s > 1 g! is as above. The set of all such strategies is
called the strategy space for player i and is denoted S'(T). The strategy
space for the game truncated at time 7 is just the cartesian product S(7) =
XY_,SY(T). Note that S(1)S S(2)< --- < S(o0). This will allow us to use
the valuation functions of the untruncated games to assign payoffs to the
truncated games. While the truncated games depend on which action is
specified as the null action, we will later see that this is irrelevant for our
results.

The outcome function x*(g) assigns a strategy selection g € S(c0) the
outcome of the game that occurs when the initial history is x,,....x, , and
afterwards each player plays g':

x(g)=:z wherefor s> 1

<s— 1
7= Istss (2.4)
glz,, 2550002, ,,0,0,...) t > max(s. 2).

We denote the outcome that occurs when each player plays g’ from the start
by x°(g). Note that x*(-) € X follows from (2.2).*

To illustrate these definitions consider in Example 2.1 the strategy by
player one to “terminate in period three unless player two has already
terminated, after period three don’t terminate™ which has the form

g'=(0,0,g},0,0,..)
i 0 x,=(@01
8= I _
x;=1(0,0)
and the strategy by player two “never terminate” which is given by

g2 =(0,0,..).

* Consider the one-player game with outcome space X consisting of any sequence of finitely
many “1's” followed by “0’s.” Then x,=(1,0,0..)€EX, x,=(1,1,0,0,..)€E X, but
lim,., x,=(l, L,..) = x, & X. One possible strategy, however, is for g {x, )= 1. thatis, if
1 has always been played before then play it again: the outcome of this strategy would be a
sequence of all 1's, that is, x,(g) = x,. € X. This pathology is avoided since (2.2) requires that
x, €X.
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Then for any x, x°(g) is the outcome that actually occurs, so

x°(g) = ((0,0);, (0, 0),, (1, 05, (0, 0),.,--.),

while if the history before time 4 is y, = (0,0), y,=(0,0), and y; = (0,0),
then y*(g)=0. In other words if one reneges on his plan to terminate in
period 3 neither player ever terminates. Finally, for

z=((0,0),, (0, 1),, (0,0)...)

(so that two does terminate in period 2) z°(g) =z and one must (and does)
choose the null action in period 3.

We turn now to equilibrium in the games S(7). Rationality of all players
implies that whatever the history of the game to date they should choose the
optimal course of action. More precisely, every decision must be part of an
optimal strategy for the remainder of the game. As there is no uncertainty at
the beginning of each period, this rationality requirement can be imposed
using Selten’s [13] concept of a subgame-perfect Nash equilibrium. (Note
that the subgame perfect and sequential equilibria coincide with the given
information structure.) Radner’s [8] concept of a subgame-perfect ¢-Nash
equilibrium generalizes perfectness by assuming players may only be able to
get within ¢ of the optimal payoff.’

DEFINITION 2.2. g* € S(T) is a subgame-perfect e-Nash equilibrium (or
simply e-perfect) if for each s > 0, history x, strategy g € S(7’) and player i,

Vies(ghg* ) — Vi (g*) <& , (2:5)

that is, if after no initial history can player i improve his payoff by more
than ¢ given the strategies of all players.

Note that g~‘ denotes the cartesian product of all players’ strategies
except for that of player i. Note also that the restriction s < T in (2.5) would
be vacuous, since, with g, g* € S(T), for t > T g, =g} = 0. Finally, if £ =0
the equilibrium is simply called perfect.

One goal of this paper is to relate e-perfect equilibria of truncated games
to perfect equilibria of the infinite game. To this end define the constants w’
to be the greatest variation in any player’s payoff due strictly to events after
(T—1):

wl = sup | Vi(x) — Vi(z)|. (2.6)
1<i<N

x,z€X
xX(T—-1)y=2(T—-1)

* As a model of bounded rationality ¢-perfect equilibrium combines almost-optimization
with perfect knowledge of the game and perfect foresight. Levine {5| presents an alternative
formulation.

PERFECTNESS IN THE INFINITE HORIZON 257

At this point w' may be infinite, but we argue later that most games of
interest in economics have w’ - 0 as T— oo.
The idea behind the limit theorem of the next section is revealed in

LEMMA 2.1
(A) h* e-perfect in S(T) is (e + w')-perfect in S(0).

(B) g* e-perfect in S(©) then h* = g*(T) = (g¥, 85 &7 0.0...) is
(e + 2w )-perfect in S(T).

The point is that strategies in S(co) differ from stratggies in S(7T) only
after time 7 and thus by (2.6) have payoffs within w' of the truncated
strategies. Formally we just add inequalities.

Proof. (A) Let g€ S(o0) and let x and s be given. Set h=g(T) =
(g,»82+8&r>0,...). By assumption

Vi(es(h', h* 1)) — Vix*(h*)) < ¢ 2.7)
while since h and g differ only after T, by definition
Vi (gl h* ) = VI Ry <wl (2.8)
Adding (2.7) to (2.8) shows
Vipes(gh h* " H) — Vi) <e+w' (2.9)

Since g, x, and s are arbitrary (2.9) implies h* is (¢ + w')-perfect.
(B) Let h€ S(T), and x, s be given. Since g* is ¢-perfect in S(o0)

Vi (h,g* ) — V'(x*(g*)) <& (2.10)
Since h* and g differ only after T
Vi (g%) — Vi (r*) < wh, (2.11)
and also
Viges (R, h* 7)) — Ve (rl, g* ) <w (2.12)
Adding (2.10), (2.11), and (2.12) shows
VigxS(h', h* ~1)) — Vi (h*)) < & + 2w, 2.13)

and thus A* is (¢ + 2w") perfect. Q.E.D.
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3. CoNTINUITY AND LiMIT EQUILIBRIA

This section contains our main result: a strategy selection is perfect in
S(c0) if and only if it is the limit as T— oo and ¢ —0 of &'-perfect
equilibria in S(7). Before proving this result we must discuss the continuity
of the valuation functions and the convergence of equilibria. This requires
that we define topologies on X and S(o0).

Recall that X < X2_,R™" = B. The metric

d(x,z)ssn;p[(l/T)min{|x,—z,|, 1}] 3.1)

induces the product topology on B.® Hereafter all statements about
continuity, convergence, etc., will be with respect to this topology (relativized
to X).

Having introduced a topology on X we now discuss continuity of the
valuation function ¥ : X —» R", which we refer to as continuity of the game.
Continuity implies that events in the far distant future don’t matter very
much. While this may not be a good assumption in planning models, such as
that of Svenson [14], it is a natural assumption about the preferences of
individual economic agents.

DEFINITION 3.1. V is uniformly continuous if for all x", z"c X,
(x" —z")—~ 0 implies | V(x") — V(z")| - 0.

Although we shall only be interested in uniformly continuous games, this
restriction may not be necessary for our limit theorem. However, many
games of interest to economists are uniformly continuous.

Recall that w” is the greatest variation in any player’s payoff due solely to
events after 7. The idea that the future doesn’t matter very much is captured
by requiring w' - 0.

DEFINITION 3.2. (X, V) is continuous at infinity ifft w' -0 as T — c0.

An important fact is that uniform continuity implies continuity at infinity.

LemMa 3.1. (X, V) uniformly continuous implies (X, V) continuous at
infinity.

This follows simply from unwinding the definitions.
A supergame has w” constant over time and is not continuous at infinity.
Thus our analysis will not apply to super-games. A repeated game (Example

¢ See Munkres |7, p. 123].
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2.2) with discount factor 1 >8>0 has w' = fw' ! and is continuous at
infinity provided w' < c0.

Finally, we must extend our notion of convergence in X to the strategy
space S(oo0) (and implicitly to its subsets S(T)T < ). We choose a
topology which captures the notion of closeness most relevant to perfect
equilibrium: two strategies / and g are close if for every / and initial history
X € X the histories resulting from f and g being played are close and the
history resulting when any one player deviates from / is close to that
resulting from the same deviation against g. This topology is generated by
the metric

d(f,g) = ‘seuy’{d(x‘(f ) x'(8)), h.:;‘}(’w,ld("'("i’f ), x'(h g DI (3.2)

Our motivation for choosing this topology is revealed by the following
lemma.

LemMA 3.2. Let g, be cperfect in S() and g,—~g in a continuous
game. Then g is also ¢-perfect.

Proof. Suppose g is not ¢-perfect so that for some (, some x € X, and
some §' € S(0),

Vi'(gh.g - Vix'(g)) 2+ 30 (3.3)
Since g,— g for large n, x'(g) is near x'(g,), and x'(g'.g Y is near

x'(g', g ). As V' is continuous, for any J > 0 we have that for large enough
n,

Vix'(g,)) — Vi(x'(g)) <0 (3.4)
Vi (ghg N — Vix'(8 8. ) <0 (3.5)

Combining (3.3), (3.4), and (3.5), we have, for large enough n,

Vix' (g, g, 1)) — Vix'(g,) > £ + 0. (3.6)

As & can be taken to be arbitrarily small this contradicts g, ¢ perfect.
Q.E.D.

The lemma shows that chosen topology was fine enough to guarantee that
the ¢-equilibrium sets are closed. Of course we could simply have declared
them to be closed, but then we could hardly hope to characterize infinite
horizon equilibria as limit points. The interest in the lemma, and the
justification of the chosen topology on the strategy, is
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THEOREM 3.3 (Limit THEOREM). Suppose V is uniformly continyoys
Then '

(A) A necessary and sufficient condition that g* be perfect in S(w) is
that there be a sequence {g,} of 2w ™-perfect in S(T(n)) such thar as
n—- o, T(n)» o, and g, — g* (in the space S{)).

(B) A4 necessary and sufficient condition that g* be perfect in S(w) is
that there be sequences ¢,, T(n), and g, such that g, is ¢,-perfect in S(T(n))
and as n— o, ¢, 0, T(n) > o0, and g, - g*.

Proof. Since the hypothesis of (A) implies that of (B), it suffices to show
the hypothesis of (A) necessary and that of (B) sufficient.

(A) Necessary: We claim the sequence { g*(n)}, g*(n) = (gf, g¥..g*.
0,0,...) with T(n) = n has the requisite property. First, since g*(n) and g*
exactly agree in the first n periods, d(g*(n),g*) < 1/(n + 1) (see (3.1) and
(3.2)). Thus g*(n)— g*. By Lemma 2.1(B) we also have g*(n) 2w -perfect
in S(n).

(B) Sufficient: By Lemma 2.1(A) g, is (¢, + w''")-perfect in S(o).
Since ¢, + w'™ - 0, for each & > 0 there is an N such that w'"™ + ¢, <4,
whenever n > N. Thus by Lemma 3.2 g* is J-perfect. Since this is true for
every d > 0, g* is in fact perfect. Q.E.D.

One application of this theorem is to repeated games. Our analysis applies
to such games if payoffs of the single-period game are continuous in the
single-period actions (in particular to repeated games with finitely many
actions) and if the discount factor is strictly less than one. In the infinite
horizon these games are known to have a plethora of equilibria when the
discount factor is sufficiently close to one. Thus we can conclude there are a
great multiplicity of g-equilibria in the finite horizon. Since in the finite
horizon case (for generic payoffs) the £-equilibrium set is well behaved with
respect to the discount factor, we can conclude that in the limit as the
discount factor reaches one (finite time-averaging) there continue to be
almost the same plethora of e-equilibria. This allows, for example, a finite-
horizon resolution of the prisoner’s dilemma. Such a resolution was the
reason Radner originally introduced the concept of e-equilibrium.

While our theorem can thus be applied via a second limit to finite-horizon
time-averaging, this trick will not work for infinite-horizon time-averaging.
These are games without impatience, in which only the longTun
matters—the opposite of our case where the future is unimportant. The
problems as the discount factor approaches one in the infinite horizon aré
suggested by the example of the “cake-eating” problem—a single agent must
choose a consumption path {x,} such that }’* x,=1, x,> 0. The agent’s
payoff is V(x)=3'* B'U(x,), with U concave. For g <! optimal
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consumption declines geometrically. However, with time averaging no
solution exists. (Note, however, that with a finite horizon the limit is well

behaved.)

4. FINITE-ACTION GAMES

Finite-action games are games in which there are only a finite number of
possible actions in each period. This section introduces finite-action games
and proves that with perfect information perfect equilibria exist. In Section 5
we use the results of this section in conjunction with Theorem 3.3 to analyze
the uniqueness of equilibrium in these games. Section 6 analyzes sequential
equilibrum of finite-action games with uncertainty and mixed strategies.

DerINITION 4.1. (X, V) is a finite-action game iff for each ¢ and history
X € X the set of outcomes in period ¢ given the history x, X(x,!) is a finite
set.

Convergence in finite-action games is easily described. First, a sequence of
realizations converges if and only if the constituent outcomes eventually
coincide for the first T periods for any 7. As an immediate consequence we
have

LeMMA 4.1. In finite-action games uniform continuity and continuity at
infinity are equivalent.

Similarly, a sequence of strategies converges if and only if its components
eventually coincide.

We turn now to the compactness of S(c0). A useful way to study this
problem is to observe that S(oo) is the space of sequences of maps
(£,.€5,..). The map g, has a finite domain, with, say, L, elements, and
ranges in R™. Thus it may be viewed simply as a vector in B} = R*""", and
S(0)c B* =X, B¥ in a natural way. Furthermore it is easy to see that
the topology in S(co) given in (3.1) and (3.2) is the same as the relative
pmfiuct topology in B*: in both cases convergence means that for any fixed
horizon the sequence is eventually stationary before that horizon. However
_S(OO) is the cartesian product of finite (and thus compact) subsets of the BF
implying that it is itself compact and proving

LEmma 4.2, In finite-action games S(o0) is compact.

. We can use Lemma 4.2 to prove an existence theorem. A game of perfect
information has no more than one player making a decision in each period
(who the plaver is may depend on the history). In our notation, for each ¢
and history x € X, there is a player i such that X ‘(x,r)=0; only player i
faces a decision.
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It is well known and can be established by backwards induction from the
horizon that a finite-horizon finite-action game of perfect information has a
perfect equilibrium. From this we deduce

CoROLLARY 4.2. Continuous (at infinity) finite-action games of perfect
information have perfect equilibria.

Proof. Each finite-horizon subgame S(T) has a perfect equilibrium g'.
By Lemma 2.1(A) g" is w"-perfect in S(c0). Since S(c0) is compact there is
a subsequence {h”) < {g"} with A" » g* € S(0). By Theorem 3.3(B) this
implies g* is perfect in S(o0). Q.E.D.

5. UNIQUENESS OF THE INFINITE-HORIZON PERFECT EQUILIBRIUM

This section uses the limit theorem of Section 3 to study the uniqueness of
infinite-horizon perfect equilibrium. The limit theorem implies that there will
be a unique equilibrium if and only if all convergent sequences of truncated
2w’ -perfect equilibria have the same limit as 7 — co. Note that this implies
that a necessary condition for uniqueness is that every convergent sequence
of perfect equilibria of the truncated games have the same limit.

The first class of games we consider are the finite-action games of
Section 4. Recall that in such games a sequence of strategies converges if and
only if they eventually agree prior to each fixed finite horizon. This means
that there will be a unique infinite-horizon perfect equilibrium if and only if
by taking the horizon, T, large enough, we can ensure both that a 2w’-
perfect equilibrium exists and that all 2w’ -perfect equilibria exactly agree in
the first k periods. Formally we have

DEFINITION 5.1. A game is finitely determined (f.d.) iff for any & >0
there is T > k such that

(a) there is g 2w’ -perfect in S(7T),
(b) if g’ is 2w'-perfect in S(T) and k > > 0, g, =g,.

PROPOSITION 5.1. There exists a unique infinite-horizon perfect
equilibrium in a finite-action game that is continuous at infinite if and only if
it is finitely determined.

Proof. Onmitted, see |2].

Thus uniqueness in finite-action games requires that changes in strategies
at the horizon not affect play in the early periods. As an illustration,
consider McClellan’s terminating game of Example 2.1. Player one moves in
odd periods, player two in even periods. Each period the player moving
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chooses whether to “terminate” or “‘continue.” If the game terminates in
period k, k odd, the payoffs are %~ '(a, b); if k is even, they are f* '(b.a):
and if no player chooses to terminate, they are (0, 0).

This game is finitely determined in two cases

case (i) a>0 a>pb
case (ii) a<0 a<pb
and it is not finitely determined in the complementary cases
case (iii) a>0 a<pb
case (iv) a<0 a>pb.

We show this for cases (i) and (iii). Note that a strategy may be viewed as a
choice the period to stop at (if the game hasn’t stopped already). For
example, if T is even, “stop at T, T—2, T —4,..” is a strategy for player
two: it means that if the game hasn’t stopped before T, two will stop it,
otherwise he chooses the null action.

Case (i) is a game which both players want to stop as quickly as possible.
Indeed, in the perfect equilibria of the truncated game the last player to move
must stop, and in every previous period the moving player stops. In a 2w’
perfect equilibrium the last player to move can choose to continue. However,
in earlier periods k, the minimum loss from continuing is £* min(a — Ba.
a — pb). Thus if & < f* min(a — f%a, a — fb) all e-equilibria must terminate at
all times before k. Since w' — 0 with T we can always choose T large
enough that 2w -perfect equilibria have both players stopping before 7. Thus
the game is finitely determined and both players always stop.

Case (iii) is a game of “chicken™: each player wants the game 1o stop, but
doesn’t want to end it himself. In the game truncated at an even time T the
unique perfect equilibrium is for two always to stop and one aiways to
continue. In the game truncated at an odd time T the unique perfect
equilibrium is for one always to stop and two always to continue. Thus the
period one action by player one isn’t uniquely determined and the game isn’t
finitely determined.

In finite-action games, uniqueness of the infinite-horizon perfect
equilibrium is equivalent to the condition that changes in strategies at the
horizon have no effect on (equilibrium) play earlier. In continuous-action
games we need not require that such changes have no effect on earlier play
but only that the effect is damped out as we work backwards from the
horizon.

We illustrate this point with an example.

EXAMPLE 5.1 (RUBINSTEIN'S BARGAINING GAME WITH DISCOUNTING).
This is a special case of a game due to Rubinstein [i1]. Two players, one
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and two, must decide how to partition a pie of size one. Both players have a
common discount factor f and a utility function linear in pie. In odd periods
player one proposes a partition which player two accepts or rejects.
Similarly, in even periods, two makes proposals. Play begins with player one
in period one. Play ends when a proposal is accepted. Thus if a partition s is
accepted in period k, player one gets a present value of B*s and two

BA(1 — ).

We will show that this game has a unique infinite-horizon perfect
equilibrium. To do so we will demonstrate that, for any history x and time ¢,
if T is big enough all 2w”-equilibria have the player moving at ¢ making an
offer his opponent accepts in the same period. We then use this fact to show
that the offer by player one on an odd move k converges to 1/(1+[) as
T oo and wT - 0. By symmetry this is also true of player two’s offers. It
follows directly that the acceptance sets of both players converge. The
convergence of offers and acceptance sets implies that the corresponding
strategies (when properly written out in the formalism of this paper) must
converge. Thus the infinite-horizon equilibrium is unique.

We recall the convention that a partition is the amount of pie going to
player one. Let e(k)=p*(1 —p)/3. If T > k we claim all &(k)-equilibria in
S(T) stop immediately. Assume without loss of generality & is odd so that
one proposes the partition at k. If two doesn’t accept one’s proposal either no
agreement is reached or two gets 1 —s in period k + /. So two must accept
any proposal promising him a present value of more than f**/(1 —s) + £(k).
In other words, if one proposes a partition of 1 — /(1 —s) — B e(k) it will
be accepted. If he is to make a proposal that is refused he must ultimately
get more than this:

B — BI(L —5) = B ek)| <B* s + elk). (5.1)
This implies
e(k) > (1 - B)/2 (5:2)

which contradicts our assumption. Since w’ -0 when T is big enough
2wT < g(k) and at time k player one must make two an offer he can’t refuse.

We continue to consider a 2w -perfect equilibrium. Let S* be the largest
(sup) proposal one makes at k and S* the smallest (inf). If 2w” is small
enough these proposals will be accepted by two and the game ends. Thus at
k one gets a present value of at least B“S* and no more than f*S*. Now
consider one’s decision in period k — I to accept or reject two’s offer. If two
proposes more than f' %(8*S* + 2w’) one must accept since he can’t get
more than §*S* by continuing. Similarly he’ll reject proposals of less than
B'*(B*S* — 2w"). Since two’s proposals must be irresistable they won’t be

PERFECTNESS IN THE INFINITE HORIZON 265

less than B'~*(B*S* — 2w") and two certainly won’t be offered more than
B'~*(B*S* + 4wT). Reasoning as above, this means that at k — 2 two accepts
proposals offering him more than g2~ *{*~'[1 — ' *(B*S* — 2w )| + 2w’
and rejects proposals offering him less than

BB — B HBASE 4 dwT)| - 2w,
As before this implies that
ST - pBA L - BHBES awT)] 2wy
SEr= 1R - BB - W) AT (53

The claim we wish to establish is that as T— co S* S* - 1/(1 + f). Since
the mapping in (6.3) is a contraction as we work it backwards from period
k+j. j large, S* approaches [1/(1 +f)]+ Ciw' and S* approaches
[1/(1 + )] — C*w". Letting w" — 0 and noticing that C} is independent of 7'
yields the desired conclusion.

6. SEQUENTIAL EQUILIBRIA

In this section we extend our analysis to allow for uncertainty and mixed
strategies in finite-action games. We use Kreps-Wilson's [4] concept of a
sequential equilibrium to model rationality in this setting. In each period ¢
“nature” makes a random move O,. Players are only partially aware of the
result of this move. Player i observes only a signal 8 € @/ < R, where o' is
a finite set. For simplicity we assume 6, = (6}, 6;....6}) so that players
would know 6, if they pooled their knowledge. Any additional uncertainty
(on the part of all players) can be incorporated directly into payofls via
expected utility. Naturally the payoff functions Vi are defined on O X X,
where @ = x* x| @), We give @ X X the product topology and define
continuity at infinity and uniform continuity over © X X rather than just X.

Decisions by agents are based on their probabilistic beliefs about past and
future values of @; these beliefs reflect private information #¢ and infor-
mation revealed by the play of opponents as revealed by the history of the
game. Let @(T)=X7_,0!. A system of beliefs for player i is sequence of
mappings 4’ with domain (s — 1) X X(s — 1) and ranging over the space of
probability measures on @(s — 1); it represents beliefs about past outcomes
given current information. Since (s — 1) and X(s — 1) are finite u' may be
viewed as a vector in a finite-dimensional vector space BY'.

To characterize an agent’s play requires specifying both his beliefs and the
strategy he chooses. Analogous to our previous definition a strategy for
player i is a sequence of mappings g’ with domain O(s — 1) X X(s — ).
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Now, however, we wish to allow mixed strategies so that g! ranges over the
space of probability measures on X i(x, s). Since O'(s— 1) X X(s — 1) and
Xi(x, s) are finite sets g may be viewed as a vector in a finite-dimensional
vector space B§.

The overall play of an agent is called an assessment: it is a system of
beliefs (u', u%,...) and a strategy (g}, g}....) for each agent i. The space of all
possible assessments is denoted by A(co). Just as S(ac)c X7 \B} so
A(0) < XY, X2 (B* X Bf)=B*. The product topology on B* then
introduces a corresponding topology on A4(c0). Note that we could have
introduced an economically meaningful topology along the lines of the
metric in (3.2). However, due to the finiteness of the game this will be iden-
tical to the product topology. We also have the notion of truncated
assessment A(T)c A(c0) in which g! places unit probability weight on
action zero for s > T. Finally, we may define U}, (s) as the expected utility
accruing to player i at time s when a is an assessment selection and the
expectation is taken according to i’s probability beliefs conditional on the
history x and the private information available from 6.

With this setup we can define a sequential ¢-equilibrium, following Radner
[8] and Kreps—Wilson |4].

DEFINITION 6.1. A sequential ¢-equilibrium is an assessment selection
(#*, g*) such that

(1) The strategy g*' is e-optimal for each player given his beliefs and
the play of opponents for all i, 6, x and s,

bes*, 8, 8% 1) — Ug,(u*, g8%) <.

(2) Agents beliefs are consistent with Bayes law in the sense that there
is a sequence (4", g") converging to (u*, g*) with g" placing positive weight
on every possible outcome and y" derived from Bayes law.

Our goal is to show that the limit theorem 3.3 holds for this new model
with “assessments” replacing “'strategies.” To do this we must reprove the
truncation lemma 2.1, Lemma 3.2 showing that the set of e-equilibria is
closed, and Theorem 3.3 itself. With the exception of Lemma 3.2 all proofs
go through verbatim by merely changing the notation to replace “‘strategies”
by “assessments.” Lemma 3.2 follows quite easily from part (2) of Definition
6.1: sequential equilibria are well behaved with respect to limiting
operations. Note that this would not be the case had we chosen to work with
“trembling-hand perfect” equilibria.

We can now prove an existence result. Since A(co) is the product of
compact sets in the product topology it is itself compact. From Kreps—
Wilson we know there is a sequential equilibrium a” in each A(7T). Since
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A(oo) is compact these have a subsequence converging to a* € A(o0). By
the limit theorem a* is a sequential equilibrium. Thus we have demonstrated

THEOREM 6.1. Continuous (at infinity) finite-action games with
imperfect information have mixed-strategy sequential equilibria.

7. CONCLUSION

In games which satisfy an economically appealing continuity requirement.
infinite-horizon equilibria coincide with the limits (as 7 — oo) of e
equilibria of the finite-horizon truncated games. Because finite-horizon
equilibria are easier to work with than infinite-horizon ones, this theorem
provides a powerful tool for analyzing infinite-horizon games. [t can be used
to compute answers to such questions as the existence and uniqueness of
infinite-horizon equilibria.

While our analysis examines only simultaneous-move extensive-form
games, it can easily be extended to cover other economic models such as
strong perfect equilibrium, and “state space” games. in which payoffs and
strategies depend not on all history but on a finite vector of “state”
variables.”® As a technical matter all that is required is to prove an analog
of Lemma 2.1 and to find some reasonable notion of the convergence of
strategies.
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