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1. Introduction

The relationship between economic theory and ewperial evidence is
controversial. One could easily get the impressimom reading the experimental
literature that economic theory has little or ngndicance for explaining experimental
results. The point of this essay is that this iFeanendously misleading impression.
Economic theory makes strong predictions about nsdionations, and is generally quite
accurate in predicting behavior in the laboratdiost familiar situations where the
theory is thought to fail, the failure is to prolyeapply the theory, and not in the theory
failing to explain the evidence.

That said, economic theory still needs to be stimmped to deal with
experimental data: the problem is that in too mapplications the theory is correct only
in the sense that it has little to say about whdit appen. Rather than speaking of
whether the theory is correct or incorrect, thevaht question turns out to be whether it
is useful or not useful. In many instances it i$ ageful. It may not be able to predict
precisely how players will play in unfamiliar sitiens? It buries too much in individual
preferences without attempting to understand hadividual preferences are related to
particular environments. This latter failing is esjally true when it comes to preferences
involving risk and time, and in preferences invalyiinterpersonal comparisons —
altruism, spite and fairness.

By way of contrast, in many circumstances equilibriis robust to modest
departures from assumptions about selfish andnatioehavior. In these circumstances,
the simplest form of the theory — Nash equilibriwith selfish preferences — explains the
data quite well. As we shall explain — in this casedictions about aggregate behavior
are quite accurate. Predictions about individuahaveor are better explained by a
perturbed form of Nash equilibrium — now widely ko as Quantal Response

equilibrium.

* The theory sometimes can still make a good priedictven when players are not familiar with the gam
being played. See Colin Camerer [2003] for exasple



2. Equilibrium Theory That Works

The central theory of equilibrium in economicshattof Nash equilibrium. Let us
see how that theory works in a reasonably completing situation. The model is
adapted from Palfrey and Rosenthal [1985]. TheseMarvoters divided into two groups,
supporters of candidate A and candidate B. The rurobvoters is odd and divisible by
three and can take on the values {3,9,27,51}. Unllalfrey and Rosenthal the two
groups are not equal in size, rather group B igdathan group A. In the landslide
treatment, there are twice as many members ofd@ As In the tossup treatment there is
one more voter in group B than in group A. The wtaay either vote for their preferred
candidate or abstain, and the rule is simple ntgjofihe members of the winning group
receive a common prize of 105, while those in teng group receive 5. In case of a tie,
both groups receive 55. Voting is costly: the casts private information and drawn
independently and randomly on the interval [0,53Players are told the rules in a
common setting, and they get to play 50 times.
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Computing the Nash equilibrium of this game is isightly difficult that it
cannot be done by hand, nor is it possible to pitba¢ there is a unique equilibrium.
However, the equilibrium can be computed numencadind grid searches show that
there is only one equilibrium. The key to equilibm is the probability of pivotal events:
the benefit of casting a vote depends on the pibtyatf being pivotal in an election. A

good test of Nash equilibrium then is to compare tiieoretical probability of a voter



being pivotal — that is, of a close election, vertie empirical frequency observed in the
laboratory. The graph above from Levine and Palff2907] plots the theoretical
probability on the horizontal axis and the empiritaquency on the vertical axis. If the
theory worked perfectly, the points should aligntbe forty-five degree line. They do.
Despite the fact that both theoretically and frobserving fifty data points it is no easy
matter to infer the probability of being pivotathe theory works nearly perfectly.

It deserves emphasis that when we speak of “thebere we are speaking
entirely of a theoretical computation. In findiniget Nash equilibrium probabilities of
being pivotalno parameters are fit to the data: no estimationoisedwhatever. A pure
computation is compared to live data, and thesfitearly perfect.

The other central theory in economics besides Ngsiiibrium is the competitive
equilibrium of a market. In modern theory, this ¢anviewed as the Nash equilibrium of
a mechanism in which traders reveal preferences noarket that then determines the
equilibrium — with the exact details of the markktaring mechanism of no importance.
Experiments on competitive equilibrium — generailty which the market clearing
mechanism is a double-oral auction in real timeavehbeen conducted many times,
dating back at least to the work of Smith [1962heTresults are highly robust:
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competitive equilibrium predicts the outcome of gmtitive market experiments with a
high degree of accuracy, with experimental marketgverging quickly to the
competitive price. One typical picture is the higtof bids in an experiment by Plott and
Smith [1978] showing the convergence to the comipetiequilibrium at a price of 60.
Again notice that the competitive price of 60 ismguted from purely theoretical
considerations — no parameters are fit to the data.

FIGURE ?.2 ABOUT HERE

This picture of data that nearly perfectly fits @lyrtheoretical computations is
true for a wide variety of experiments and is verych at odds with the viewpoint that
experimental results somehow prove the theory wrbmdged the theory fits much better
than models that must be estimated in order taoigy field data.

3. Equilibrium Theory that Does Not Fail

Moving past theory that predicts accurately andlwtiere are a set of
experiments in which equilibrium — especially tledinement of subgame perfection —
apparently fails badly. One such example is themalium bargaining game. Here one
player proposes a division of $10 in nickels, amel $econd player may either accept or
reject the proposal. If she accepts then the mandivided as agreed upon. If she rejects
the game ends and neither player receives any m&ugame perfection predicts that
the second player should accept any positive amandtso the first mover should get at
least $9.95. The table below with the data fromhRet al [1991] shows that this is

X Offers Rejection Probability
$2.00 1 100%
$3.25 50%
$4.00 14%
$4.25 0%
$4.50 100%
$4.75 0%
$5.00 13 0%
27
US $10.00 stake games, round 10

== N = N

scarcely the case. Nobody offers less than $2.@0nawst offers are for $5.00, which is
the usual amount that the first player earns. Sigoaty, it would be hard to imagine a



greater rejection of a theory than this. MoreoVike competitive market games, these
results have been replicated many times under roamgitions.

TABLE ?.1 ABOUT HERE

Despite appearances, theory is consistent with ethesults — it is the
misapplication of the theory that leads to the appaanomaly. First, the computation of
the subgame equilibrium is based on the assumghi@inplayers are selfish — that they
care only about their own money income. This assiomp- which has nothing to do
with equilibrium theory, but is merely an asserti@mout the nature of players’ utility
functions — is clearly rejected by the data. Aishlfplayer would not reject a positive
offer — this fact is the basis for calculating fubbgame perfect equilibrium. However, the
data clearly shows that five out of twenty-sevesiipe offers are rejected. The data —
not to speak of common sense — shows that manesldiynd low offers offensive in the
sense that they prefer nothing at all to a smalteslof the pie. A “theory” based on the
assumption of selfish preferences will naturally @ explain the data. However, there is
nothing in the logic of rationality, Nash equiliom, or subgame perfection that requires
players to have selfish preferences.

It is true in the mainstream theory of competitimarkets economists typically
assume that people are selfish. This is not becacgeomists believe that people are
selfish — we doubt you could find a single econdmiso would assert that — but rather
because in competitive markets it does not matteetlver or not people are selfish
because they have no opportunity to engage in fgpiter altruistic behavior.
Consequently it is convenient for computational pmses to model people in those
environments as being selfish. That should notkert to mean that this useful modeling
tool should be ported to other inappropriate emnments, such as bargaining situations.

Surprisingly, even the theory of selfish preferendees not do so badly as a
cursory inspection of the data might indicate. Neghilibrium — as opposed to subgame
perfection — allows any offer to be an equilibriumis always possible that any lower
offer than the one the first player makes mightdjected with probability one, while the
current offer is accepted. Nash equilibrium rulastavo less obvious features of the data.
It rules out a heterogeneity of offers, and it subeit offers being rejected in equilibrium
(if players are truly selfish). It is a mistakenewi of the theory that leads to the
conclusion that this is a large discrepancy. Argotly is an idealization. Players’ exact



preferences, beliefs, and so forth are never gmirige known exactly to the modeler. As
a result, the only meaningful theory of Nash egquilim is Radner’s [1980] notion of
epsilon equilibrium. This requires only that noyaaloses more than epsilon compared
to the true optimum — which in practice can newveikbown by the players. The correct
test of the goodness of fit of Nash equilibriumexperimental data is not whether the
results look like a Nash equilibrium, but ratherettter players’ losses (epsilon) are small
relative to what they might have had.

The correct calculation of the departure of thesfdcom the theory, in other
words, is to determine how much money a player Wad available the experimental
data could have earned, and compare it to how rthathplayer actually earned. To the
extent this is a large amount of money, we conchthéetheory fits poorly. To the extent
it is a small amount of money we conclude the thdds well. This is regardless of
whether the data “appear like” a Nash equilibriunmot. The key point is that allowing a
small epsilon in certain games can result in adatgange in equilibrium behavior. That
large change does not contradict the theory oflibguim — it is predicted by the theory
of equilibrium.

For the ultimatum game, Fudenberg and Levine [19%tulated the losses
players suffered from playing less than optimadtsigies given the true strategies of their
opponents. Out of the $10 on the table, playery tode on average about $1.00 per
game.

This is not the end of the story however. Nash ldgiim, as least as it is
currently viewed, is supposed to be the equilibrivmwhich players understand their
environment, including how their opponents playisisupposed to be the outcome of a
dynamic process of learning — indeed, it may adelyde described as a situation where
no further learning is possible. This is importamtthe games in which the theory
worked: in the voting experiment players playedt®®es and so had a great deal of
experience. Similarly, in the double oral auctigrlayers got to participate in many
auctions and equilibrium occurs only after they wacg experience. In the ultimatum
game, players got to play only ten times. More ingd, in an extensive form game
where players are informed only of the outcomes aoidtheir opponents’ strategies,
players would have to engage in expensive actamieg to achieve a Nash equilibrium,
and without a great deal of repetition and patieticey have no incentive to do so. In



ultimatum bargaining in particular, the first movean only conjecture what might
happen if she demanded more — in ten plays theneladively little incentive or
opportunity to systematically experiment with difat offers to see which will be
rejected or accepted. If the game were played ib@€st for example, then it would make
sense to try demanding a lot to see if perhapopp®nent would be willing to accept
bad offers. In 10 repetitions such a learning sgatdoes not make sense.

A weaker theory than Nash equilibrium — but one emsuitable to the ultimatum
bargaining environment — is that of self-confirmiaguilibrium introduced in Fudenberg
and Levine [1993]. This asserts that players opngiven correct beliefs about the
equilibrium path, but does not require that thepwncorrectly what happens off the
equilibrium path, as they do not necessarily obsénat. This makes a difference when
computing the amount of money players “lose” remtito the true optimum. In
ultimatum bargaining as we observed the first mevamnnot know what will happen if
they demanded more. So setting making a demandshab low is not a “knowing”
error, in the sense that the player has no wayntwkwhether it is an error or not. This
leads us to compute not just the losses made tbgyarrelative to the true optimum, but
to compute how many of those losses are “knowirsgde” meaning the player might
reasonably know that he is making a loss. Selfiomnfig equilibrium is a theory that
predicts that knowing losses should be low — bukesano prediction about unknowing
losses.

For the ultimatum game, Fudenberg and Levine [198i8p calculated the
knowing losses. On average players lose only $pe83yame, and this is due entirely to
second players turning down positive offers — whashwe noted has nothing to do with
equilibrium theory at all. It is interesting to cpare the impact of preferences (the
spiteful play of the second players) versus thdtaifning (the mistaken offers of the first
players). Players on average lose $0.33 due tmfareferences that are not selfish, and
they lose on average $0.67 due to the fact that ek adequate opportunity to learn
about their opponents’ strategies. The losses altieet deviation of preferences from the
assumption of selfish behavior are considerablg than the losses due to incomplete
learning.

The message here is not that theory does well wiiimatum bargaining. Rather
the message is that theory is weak with respegltimatum bargaining — very little data



in this game could be inconsistent with the thed®ather by applying the theory
inappropriately, the conclusion was reached thattbieory is wrong, while the correct
conclusion is that the theory is not useful. Modefforts in theory are quite rightly
directed towards strengthening the theory — pripéry better modeling the endogenous
attitudes of players towards one another as inneey1998], Fehr and Schmidt [1999],
Bolton and Ockenfels [2000], or Gul and Pesendd#&eo4].

We can tell a similar tale of poorly applied subgaperfection in the other
famous “rejection” of theory, the centipede gamdloKelvey and Palfrey [1992].
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The extensive form of the game is shown above. &'hes two players, and each
may take 80% of the pot or pass, with the pot dagbht each round. Backwards
induction says to drop out immediately. In fact, the empirical frequencies in the
diagram show, only 8% of players actually do th&d. in ultimatum bargaining, the
evidence seems to fly in the face of the theoryaiAga closer examination shows that
this is not the case.

In a sense, this centipede game is the oppositdtioiatum. In ultimatum the
apparent discrepancy with theory was driven byféloe that second movers are spiteful
in the sense of being willing to take a small lésgunish an ungenerous opponent. In
centipede the discrepancy is driven by altruisny-the willingness of a few players to
suffer a small loss to provide a substantial rewtaréh generous opponent. The crucial
empirical fact is that 18% of players will makeit tp their opponent in the final round.
Notice that it costs them only $1.60 to give a gifirth $5.60. These gifts change the
strategic nature of the game completely. With ttes@nce of gift-givers, the true optimal

strategy for each player is to stay in as longassiple. If you are the first mover stay in



and hope you get lucky in the final round. If yoe the second mover and make it to the
final round, go ahead and grab then.

Most of the losses in centipede are actually seffeby players (foolishly
misapplying subgame perfection?) who do not redhz¢ they should stay in as long as
possible, and so drop out too soon. Overall losse®e computed by Fudenberg and
Levine [1997] to be about $0.15 per player per gadwvever, if you drop out too soon,
you never discover that there were players givimgpay away at the end of the game, so
those losses are not knowing losses. The only kmp\asses are the gifts by players in
the final round. These amount to only $0.02 pergigper game. Notice that as in
ultimatum, failed learning is responsible for salnsially greater losses than deviation in
preferences from the benchmark case of selfishness.

Another important effort is to try to capture tmsight of epsilon equilibrium —
that when some players deviate a little from efuitim play, this may greatly change the
incentives of other players — without losing thedictive power of Nash equilibrium.
The most important effort in that direction is wimas become known from the work of
McKelvey and Palfrey [1995] as quantal responseilibgum. This allows for the
explicit possibility that player make random erro8pecifically, if we denote by the
utility that a player receives from her own punat&gy s, and opponents mixed strategy
o_; by u(s;,0_;), and let\; > 0 be a behavioral parameter, we define the propensit
with which different strategies are played by

pi(s;) = exp(Nu,(s;,0-;)) -

Quantal response theory then predicts that thedrsk@tegies that will be employed are
given by normalizing the propensities to add to one

oi(si) = pi(si)/zsi.pi@i ).

This theory, like Nash equilibrium, makes strongedictions. As A\, — oo, these
predictions in fact converge to those of Nash dguilm. One important strength of this
theory is that it allows for substantial heteroggnat the individual level. This is
important, because experimental data is quite na@sg individual behavior generally
heterogeneous.

FIGURE ?.4 ABOUT HERE
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A good example of this is in the Levine and Palff2@07] voting experiment
described in the first section. The aggregate ffithe theory was very good, but at the
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T (lefth
£

individual level, the theory fits poorly. Figure tdken from that paper shows the
empirical probability with which a voter particigst as a function of the loss from
participating. If the loss is positive, Nash edwiluim predicts the probability of
participation should be zero; if it is negativee tprobability of participation should be
one, and the data should align itself accordinghe individual data in the form of red
crosses and the aggregated data in the form oflinlee show that this is by no means
true. When losses and gains are small, the protyalwf participation is relatively
random — near 50%. As the loss from participatingreases, the probability of
participating decreases — but it hardly jumps frbto O as the threshold of indifference
is crossed. However, the gradual decline seendrd#ta is exactly what is predicted by
guantal response equilibrium. Quantal responseigisedhat when players are near
indifferent they effectively randomize. As incerss become stronger they play more
optimally. The green line shows the best fit quamésponse function where, is
estimated from the data. As can be seen, it feésritlividual level data quite well.

A key idea here is that in the aggregate quansgaese equilibrium may or may

not be sensitive to values of that are only moderately large. In some gamed) si8c
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the voting game, it makes little difference to aggte behavior whak; is, since some
voters over-voting makes it optimal for other vetdo under-vote. Similarly in the
market games, individual errors do not matter maictine aggregate level. The important
thing is that we can always compute the quant@iaiese equilibrium and determine how
sensitive the equilibrium is to changesin

A good illustration of the strength — and potenti@akness — of quantal response
equilibrium is the mixed strategy example of thgnasetric matching pennies game,
described in Goeree and Holt [2001.is a simple2x 2 simultaneous game where the
row player chooses betwe&op andBottom and the column player chooses betwieefh
andRight. The payoff is (40,80) when the outcomeTisg, Right) or (Bottom, Left), and
(80,40) when the outcome iBdttom, Right). It would be symmetric if the payoff for the
outcome Top, Left) was (80,40), but here we are interested in thenagetric cases
where the payoff forTop, Left) is (320,40) in one case (denoted “the (320,46¢0aand
(44,40) in the other (denoted “the (44,40) casé&he data in Goeree and Holt [2001]
shows in the lab 96% of row players plEgp and 16% of column players plagft in the
(320, 40) case, with the fraction numbers 8% arib 88spectively for the (44, 40) case.
It is obvious that these lab results are quiteed#iit from what the theory of Nash
equilibrium predicts, where the fraction of row ysas playingTop should be 50% in
both cases.

If we apply the theory of quantal response equiliiorto this mixed
strategy example, the prediction power can be ingndoy a large degree. We do the
calculations using each of the two alternative mggtionS: (1) the standard selfish
preference assumptionU(=u) and (2) the more realistic altruistic preference
assumption Y, =au, +(1-a)u_,, where aJ[0,1)). In Figure 5, the horizontal axis
represents the fraction of row players who plap and the vertical axis represents the
fraction of column players who pldyeft. Both Nash and quantal response equilibria are
shown: the original equilibrium corresponding toe tiselfish case and the “new”

equilibrium corresponding to altruistic prefereneéh parametera =0.91are shown.

> Note however that players only got to play oncens learning was possible.
® We also did the calculation by assumifig- 3) fraction of people have altruistic preference trarest

B € (0,1) fraction of people are selfish, but the resuln@t improved much from the case in which
6 = 0, which is equivalent to assumption (2).



12

The curves correspond to different quantal respensdibria with different values ok.
Note that we assume that since players are drawm fthe same population
A==\

By allowing players to make mistakes, as we carfrese the graph, the theory of
guantal response equilibrium gives a better pramtidhan Nash equilibrium does. This is
especially true in the (320, 40) case with altraipteference assumption— whdn= 20,
the quantal response equilibrium is quite closavi@t the experimental data says. It is
also worth noting from the graph that the improvetria results from applying quantal
response equilibrium alone (for example, in the0(8Q) case, equilibrium shifted from
(0.5,0.13) to (0.82,0.22)) is more than the improgat from assuming altruistic
preference alone (respectively, equilibrium shifien (0.50,0.13) to (0.75,0.12)). What
remains mysterious is the (44, 40) case, wherdatheesult is poorly explained either by
allowing people to make mistakes or by the prefesesf altruism.

FIGURE ?.5 ABOUT HERE
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We can also analyze equilibrium in this game. Under the selfish prefese
assumption, the laboratory data corresponds te amalue of $0.07 per player per game
for the (44,40) case and $0.06 for the (320,40¢.cdbe s values are $0.05 and $0.02
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respectively under the altruistic preference assiompin the (44,40) case the set of
possible equilibria is quite large: pretty much amixture in which the fraction of row
players playingTop is less than 50% and fraction of column players wplay Left is
greater than 50% is an equilibrium. In this sense it is not surprisingtlhe lab result is
far off the prediction of the selfish-rational tmgo What is interesting is that the
perturbations to payoffs that explain the labomatogsult are due neither to errors
(quantal response) or altruism.

In the case of the (320,40) case, the set efjuilibrium is not so large. It predicts
little about the row players’ play — just that ttewv player should playop more than
50% of the time. This must be the case, as the Mgallibrium requires 50% plajop,
and in the laboratory result 96% plagp, and of course both of these must lie in the
equilibrium set. Notice, however, that the playtloé column player is predicted with a
relatively high degree of precision: it lies in tlamge of 10-22%.

4. What Experiments Have Taught Us

Experimental economics has certainly taught us whtdre theory needs
strengthening — as well as settling some long-st@nanethodological issues. For
example, the issue of “why should we expect Nashlibgum” has always had two
answers. One answer is that players introspectivefgine that they are in the shoes of
the other player, and reason their way to Nashliequm. This theory has conceptual
problems, especially when there are multiple eudi It also has computational issues —
for example there is a great deal of evidence tttgame in which commuters choose
routes to work during rush hour is in equilibriuntthaugh individual commuters
certainly do not compute solutions to the game. édd¢lie-less in principle, players
might, at least in simpler games, employ a prooedwch as the Harsanyi and Selten
[1988] tracing procedure. Experimental evidencewdwer, decisively rejects the
hypothesis that the first time players are expdseal game they manage to play a Nash
equilibrium. As a result the current view — for exale in Fudenberg and Levine [1998] —
is that if equilibrium is reached, it is througlateing. For example, the rush hour traffic
game is known from the work of Monderer and Shapl&p6] to be a potential game,
and such games have been shown, for example byn8am@2001], to be stable under a
wide variety of learning procedures.
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As Nash equilibrium cannot predict the outcome né-off games, one area of
theoretical research is to investigate models ¢hat The most promising models are the
type models of Stahl and Wilson [1995]: here playare viewed as having different
levels of strategic sophistication. At the bottoavdl, players play randomly; more
sophisticated player optimize against random oppts@ven more sophisticated players
optimize against opponents who optimize againsdaan opponents, and so forth.
Experimental research, for example by Costa-Gonteal ¢2001], shows that these
models can explain a great deal of first-time plagy,well as the details of how players
reason. The greatest lacuna in this literaturéhas it has not yet been well tied in to a
theory of learning: we have a reasonable theoryiref-time play, and a reasonable
theory of long-term play, but the in-between hasheen solidly modeled.

The second area we highlighted above is the areat@fpersonal preferences:
altruism and spite. As mentioned, there are a sadeémodels including Levine [1998],
Fehr and Schmidt [1999], Bolton and Ockenfels [3000 Gul and Pesendorfer [2004],
that attack this problem, but there is not as y&ttted theory.

There is one “emperor has no clothes” aspect okmx@ntal research. This
involves attitudes towards risk. The standard moaofelgame theory supposes that
players’ preferences can be represented by a edndiiity function. The deficiency in
this theory was highlighted by Rabin’s [2000] parad

“Suppose we knew a risk-averse person turns dowh05dse $100/gain $105
bets for any lifetime wealth level less than $380,0but knew nothing about the
degree of her risk aversion for wealth levels ab$$80,000. Then we know that
from an initial wealth level of $340,000 the perseifi turn down a 50-50 bet of
losing $4,000 and gaining $635,670.”

The point here is that in the laboratory playenrgtirely turn down 50-50 lose $100/gain
$105 gambles, and even more favorable gamblesth¥eis not only inconsistent with
behavior in the large — it is off by (three!!) ordeof magnitude. Roughly, the stakes in
the laboratory are so small, that any reasonabtgedeof risk aversion implies risk
neutrality for laboratory stakes — something stiprgntradicted by the available data.
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There are various possible theoretical fixes, nagdrom the prospect theory of
Tversky and Kahneman [1974] to the dual self apgroaf Fudenberg and Levine
[2006], but it is fair to say that there is no ketttheory, and that this is an ongoing

important area of research.

5. Conclusion

The idea that experimental economics has somehoertwomed years of
theoretical research is ludicrous. A good way t@apvup, perhaps, is with the famous
prisoner’s dilemma game. No game has been so ntudied either theoretically or in
the laboratory. One might summarize the widesprgad as: people cooperate in the
laboratory when the theory says they should Gatieat emptor. The proper antidote to
that view can be found in the careful experimert®a Bo [2005]. The proper summary
of that paper is: standard Nash equilibrium theafrgelfish players works quite well in
predicting the laboratory behavior of players irspner’s dilemma games.

What experimental economics has done very effdgtigeto highlight where the
theory is weak, and there has been an importanibéek loop between improving the
theory — quantal response equilibrium being antaoting example — and improving the

explanation of experimental facts.
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